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Résumé 

La modélisation de la formation de réseaux a récemment fait l’objet d’un intérêt 
croissant en économie. Un des aspects importants relevés dans la littérature est 
l’efficience des réseaux. Malheureusement, dès que les fonctions de gain ne sont pas 
élémentaires, la recherche des réseaux efficients s’avère être un problème analytique 
difficile, ainsi que une tâche informatique très lourde, même pour le cas où le nombre 
d’agents est faible. Dans cet article,  nous explorons la possibilité d’utiliser les 
algorithmes génétiques (AG) pour identifier les formes efficientes de réseaux dans la 
mesure où ces algorithmes ont démontré leur capacité à résoudre des problèmes 
d’optimisation complexes. La robustesse de leur capacité à prédire les réseaux efficients 
est testée sur deux modèles simples introduits par Jackson et Wolinski (1996), modèles 
pour lesquels les réseaux efficients sont analytiquement connus pour l’ensemble de 
l’espace des paramètres. Nous démontrons aussi que cette approche permet d’obtenir des 
résultats exploratoires  dans le modèle de connexion linéaire spatialisé de Johnson et 
Gilles (2000), modèle dans lequel l’allocation efficace des connexions bilatérales est 
guidée par des forces contradictoires qui favorisent soit une structure centralisée autour 
d’un agent, soit des réseaux uniquement localement connectés. 
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The modelling of networks formation has recently became the object of an increasing 
interest in economics. One of the important issues raised in this literature is the one of 
networks efficiency. Nevertheless, for non trivial payoff functions, searching for efficient 
network structures turns out to be a very difficult analytical problem as well as a huge 
computational task, even for a relatively small number of agents. In this paper, we 
explore the possibility of using genetic algorithms (GA) techniques for identifying 
efficient network structures, because the GA have proved their power as a tool for 
solving complex optimization problems. The robustness of this method in predicting 
optimal network structures is tested on two simple stylized models introduced by Jackson 
and Wolinski (1996), for which the efficient networks are known over the whole state 
space of parameters values. We also show that this approach can provide new 
exploratory results for the linear-spatialized connections model of Johnson and Gilles 
(2000), in which the efficient allocation of bilateral connections is driven by 
contradictory forces that push either for a centralized structure around a coordinating 
agent, or for only locally and evenly distributed connections. 
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Abstract

The modeling of networks formation has recently became the object of an increasing interest in

economics. One of the important issues raised in this literature is the one of networks efficiency.

Nevertheless, for non trivial payoff functions, searching for efficient network structures turns out to

be a very difficult analytical problem as well as a huge computational task, even for a relatively

small number of agents. In this paper, we explore the possibility of using genetic algorithms (GA)

techniques for identifying efficient network structures, because the GA have proved their power as a

tool for solving complex optimization problems. The robustness of this method in predicting optimal

network structures is tested on two simple stylized models introduced by Jackson and Wolinski (1996),

for which the efficient networks are known over the whole state space of parameters values. We also

show that this approach can provide new exploratory results for the linear-spatialized connections

model of Johnson and Gilles (2000), in which the efficient allocation of bilateral connections is driven

by contradictory forces that push either for a centralized structure around a coordinating agent, or

for only locally and evenly distributed connections.
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1 Introduction

Modelling networks has recently became the object of an increasing interest in economics and other

social sciences. Indeed, in many situations, not only local interactions but the whole network struc-

ture matter for determining individual and collective outcomes of various activities. A large set of

examples includes, among others, networks of firms’ board members, scientific collaboration net-

works, friendship networks for information exchange on job opportunities, buyers sellers networks,

or co-invention networks. Two main questions are central in the economic approach (Jackson, 2004).

Which networks are likely to form when agents choose their connections in order to maximize given

individual payoffs structures? How efficient are networks that emerge from self-interested agents’

choices, that is, how individual incentives for links formation affect social welfare?

A first stylized economic model that tackles those two questions is the coauthor model, introduced

by Jackson and Wolinski (1996) (hereafter JW96). It considers the simple strategies of researchers

in accepting (or refusing) to spend time in bilateral collaborations with peers for writing papers.

Agents aim to efficiently allocate their time on bilateral research projects. The simple specification

of the individual payoffs in these models allows the authors to obtain systematic analytical results

on graphs efficiency and partial results on networks stability. In a second stylized model, called the

connections model, also introduced by JW96, links represent relationships (for example, friendships)

between individuals. The latter benefit from their direct and costly connections and also from indirect

connections, through the relational network of their partners. Thus, agents try to maximize the value

generated from direct and indirect connections taking into account the cost of direct connections,

and avoiding superfluous links. Nevertheless, the efficient and stable network structures in these two

models are very simple (complete network, empty network, complete star, disconnected pairs) and

have little in common with real social or economic networks.

More recently, Johnson and Gilles (2000) (hereafter JG00) and Carayol and Roux (2004, 2006)

propose spatialized variations of the connections model. They assume that agents are located at

equidistant intervals respectively on a linear and on a circular world and assume that link formation

costs increase with spatial distance. Such models generate emerging networks that are much complex

and which tend to correspond more to the empirically observed social networks1. Nevertheless, it

becomes then difficult to compute both analytically and numerically the efficient network structures2.

It is only for specific values of the parameters that efficient networks are known. Therefore, one can

not systematically appreciate to what extent emerging networks are efficient and whether they are

structurally different from the optimal networks. This constitutes an issue that may be faced by

many network formation models.

In this paper, we propose a technique intended to solve this problem. As a matter of fact, the

connection structure of any network can be expressed as an ordered sequence of binary elements (a

vector of bits). The value function maps each of such sequences onto the value space. The search for

efficient networks can hence be seen as an optimization problem on the space of such sequences i.e.

1In particular, Carayol and Roux (2006) obtain, in a dynamic setting and for a wide set of parameters, networks

that exhibit the Small World properties (i.e. highly clustered connection structures and short average path length).
2Even for a relatively small numbers of players, the number of possible networks becomes very large. JG00 observe

that the number of possible networks for n agents is
Pc(n,2)

k=1 c(c(n, 2), k) + 1 where, for every k ≦ n, c(n, k) :=

n!/ (k!(n − k)!) . For example, when n = 8, the number of possible networks exceeds 250 million.
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the space of all possible networks. We propose here to use a tool well designed for solving optimization

problems of such kind, namely Genetic Algorithms. Therefore, the first aim of the present study is

to develop and to test this method. GA performance is assessed on the two stylized simple models

(the connections model and the coauthor model) introduced by JW96, for which analytical results

on network efficiency cover the whole state space of the parameters values, as well as on the linear

spatialized connection model of JG00 for which benchmark efficient networks are available (using

analytical or numerical techniques) for some regions of the parameters values.

The second aim of the paper is to provide the first explorative use of the GA optimization tool to

determine efficient networks when no benchmark is readily available. Therefore, we intend to show

that this new approach is effectively useful in the exploration of the efficient structures in models

of networks formation for which we can not systematically rely on analytical results. The linear

spatialized connections model of JG00 is a rather good candidate, essentially for two main reasons.

Firstly, since the efficient network structures are known for some subsets of the parameter space of

this model, it is possible to benchmark the capacity of the GA approach to correctly find efficient

networks in this very model. The second reason is related to the economic analysis. This model

exhibits simultaneously positive externalities to link formation that decay geometrically with social

distance, and link formation costs that increase linearly with the spatial distance. Efficiency in this

model is thus driven by two contradictory forces. On the one hand, cost minimization strongly

favours the sole formation of local connections. On the other hand, the maximization of externalities

pleads for network coordination around some central and highly connected agent (thus even to distant

agents through costly connections). The exploratory analysis we propose provides new results that

highlight the circumstances under which the networks should be either only locally connected, or

centrally structured around a key player who may be complemented by some local stars.

The article is structured as follows. The next section begins with some basic definitions on

graphs and efficiency. Section 3 presents the three stylized models developed in JW96 and JG00 and

efficient network configurations in these models. Section 4 introduces the Genetic Algorithms. The

performance of the GA in determining network efficiency in the stylized models are presented and

discussed in Section 5. Exploratory results for the spatialized connections model of JG00 are given

in Section 6. The last section briefly concludes.

2 Background notions and definitions

In this section, we introduce the notation and the basic notions for studying networks efficiency.

We limit our attention to the case of non-directed graphs, where bonds are symmetric and built on

mutual consent, as it occurs in many real social networks. We begin with some basic notations for

networks in this context. Then, we present the notions of network value and efficiency.

2.1 Basic notions on graphs

We consider a fixed and finite set of n agents, N = {1, 2, ..., n} with n ≥ 3. Let i and j be two

members of this set. Agents are represented by the nodes of a non-directed graph, which’s edges

represent the links between them. The graph constitutes the relational network between the agents.

A link between two distinct agents i and j ∈ N is denoted ij. A graph g is a list of unordered
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pairs of connected and distinct agents. Formally, {ij} ∈ g means that the link ij exists in g. We

define the complete graph gN = {ij | i, j ∈ N} as the set of all subsets of N of size 2, where all

players are connected to all others. Let g ⊆ gN be an arbitrary collection of links on N . We define

G =
{
g ⊆ gN

}
as the finite set of all possible graphs between the n agents.

Then for any g, we define N(g) = {i | ∃j : ij ∈ g}, the set of agents who have at least one link in

the network g. We also define Ni(g) as the set of neighbors agent i has, that is: Ni(g) = {j | ij ∈ g} .

The cardinal of that set ηi(g) = #Ni(g) is called the degree of node i. The total number of links

in the graph g is η(g) = #g = 1
2

∑
i∈N ηi(g), while the average number of neighbors is given by

η(g) = 2η(g)/n.

A path connecting i to j in a non empty graph g ∈ G, is a sequence of edges between distinct

agents such that {i1i2, i2i3, ..., ik−1ik} ⊂ g where i1 = i, ik = j. The length of a path is the number

of edges it contains. Let i←→g j be the set of paths connecting i and j on the graph g. The set of

shortest paths between i and j on g noted i←̃→gj is such that ∀k ∈ i←̃→gj, we have k ∈ i←→g j and

#k = minh∈i←→gj #h. We define the geodesic distance between two agents i and j as the number of

links of the shortest path between them: d(i, j) = dg(i, j) = #k, with k ∈ i←̃→gj. When there is no

path between i and j, their geodesic distance is conventionally infinite: d(i, j) =∞. A graph g ⊆ gN

is said to be connected if there exists a path between any two vertices of g.

Two other typical graphs can be introduced here. The empty graph, denoted g∅, is such that it

does not contain any links. A non empty graph g ∈ G is a (complete) star, denoted g⋆, if there exists

i ∈ N such that if jk ∈ g⋆, then either j = i or k = i. Agent i is called the center of the star. Notice

that there are n possible stars, since every node can be the star center.

2.2 Networks value and efficiency

The payoffs that individuals naturally obtain from their position in the network result from the

difference between the benefits derived from this position and the costs borne to maintain it. Let

πi (g) be the net individual payoff that the agent i receives from maintaining his position in the

network g, with πi :
{
g | g ⊆ gN

}
→ ℜ.

We consider the strongest notion of efficiency which is preferred in the economics of networks

literature since the pioneering work of JW96. Let the network social value π (·) be computed by

simply summing individual payoffs3. The total value of a graph g, with π(∅) = 0 is given by:

π (g) =
∑

i∈Nπi (g) (1)

A network is then said to be efficient since it maximizes this sum. The formal definition follows.

Definition 1 A network g ⊆ gN is said to be efficient if it maximizes the value function π(g) on the

set of all possible graphs
{
g | g ⊆ gN

}
i.e. π(g) ≥ π(g′) for all g′ ⊆ gN .

It should be noticed that several networks can lead to the same maximal total value. For example,

if we consider strictly homogenous agents, any isomorphic graph of an efficient network is also efficient.

We will use this definition of efficiency (Definition 1) in this paper.

3One can also consider that the social value of a network could be reallocated among the individuals of the network,

for example, through taxes or subsidies, in order to take into account their investment in this network (for example,

in the case of a star, the center of this network supports important costs for direct connections and thus could be

compensated for this). For much more details on the question of allocation rules, see Jackson (2004).
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3 Networks efficiency in stylized models of network formation

In this section, we present three stylized models of network formation (the two first models were

introduced by JW96 while the third was proposed by JG00) and predictions regarding network

efficiency.

3.1 The coauthor model

The coauthor model intends to represent the simple strategies of researchers in accepting (or refusing)

to spend time in bilateral collaborations, with peers, for writing articles. Agents aim to efficiently

allocate their time on bilateral research projects. The amount of time that an agent can spend

on a project is inversely related to the number of projects he is involved in. Therefore, indirect

connections produce negative effects on agents’ productivity: an additional collaboration generates

a negative externality on actual coauthors. In the initial model there is no explicit cost for direct

connections. In the version presented here we introduce such costs as in Carayol and Roux (2004).

Formally, the net profit received by any agent i at period t, is given by the following equation:

πi (g) =
∑

j∈Ni(g)

(
1

ηi(g)
+

1

ηj(g)
+

1

ηi(g)ηj(g)
− c

)
(2)

when ηi(g) 6= 0, and it is assumed that πi (g) = 0 otherwise.

Recall that ηi(g) is the number of agents directly connected to i (i’s coauthors). As a consequence,

each agent i benefits from any of his coauthors j by the fraction of his time (or efforts normalized to

unity) he spends working with him 1/ηi(g), and by the fraction of time j spends to write a paper with

i, 1/ηj(g). The term 1/ηi(g)ηj(g) accounts for some increased productivity for agents who spend a

high share of their time working together. We consider here that the agent also bears a unitary cost

c to sustain each of his direct connections.

The predictions regarding network efficiency in this model are the following.

Proposition 1 (extension of the Proposition4 in JW96). Assume that n is even.

(i) If c < 3, the unique efficient network in the coauthor model is a graph consisting of n/2

separate pairs.

(ii) If c > 3, the unique efficient network is the empty network g∅.

The proofs when c = 0 are given by JW96. When 0 < c < 3, it can be easily shown that

n(3 − c) is the maximal total value obtained in this model (n(3 − c) is the value of n/2 separate

pairs corresponding to: ∀i, j ∈ N, ηi(g) = ηj(g) = ηi(g)ηj(g) = 1). When c > 3, any connected

pair of such network generates a negative value, and any non empty network (including any network

composed of a given number of separate pairs) has a negative value. Therefore, the empty network

which generates a null value becomes the only efficient network.

3.2 The connections model

In the connections model, links represent individuals’ relationships. One can think of those links

as the support of communications that produce informational benefits in terms of job opportunities

or innovative ideas. In such a context, agents benefit also from indirect connections, through the
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relational network of their partners. Nevertheless, the communication is not perfect: the positive

externality deteriorates with the relational distance between indirectly connected agents. Formally,

there is a decay parameter which stands for the quality of information flows through each bilateral

connection. Moreover, individuals’ direct connections involve also some costs in this model. As

a consequence, agents try to maximize the value generated from direct and indirect connections,

avoiding superfluous connections. It follows that in this model nobody wants to be the center of a

star because it is too costly, but everybody wants to be connected to a star.

The net profit received by any agent i, is given by the following simple expression:

πi (g) =
∑

j∈N\i

δd(i,j) −
∑

j:ij∈gt

cij (3)

where d(i, j) is the geodesic distance between i and j. δ ∈ ]0; 1[ is the decay parameter and δd(i,j)

gives the payoffs resulting from the (direct or indirect) connection between i and j. It is a decreasing

function of the geodesic distance since δ is less than unity. If there is no path between i and j, then

d(i, j) = ∞ and thus δd(i,j) = 0. Finally, cij is the cost born by i to maintain a direct connection

with j. For simplicity, JW96 assume that cij = c a positive parameter.

The predictions of this model regarding efficient networks are summarized in the following propo-

sition and in Figure 1.

Proposition 2 (JW96, Proposition 1). The unique efficient network in the connections model is:

(i) the empty network g∅ if c > δ + n−2
2 δ2, (border C1 in Figure 1);

(ii) the star g⋆ if δ − δ2 < c < δ + n−2
2 δ2;

(iii) the complete graph gN if c < δ − δ2, (border C2 in Figure 1).

Proofs can be found in JW96.

3.3 The linear spatialized connections model

We now turn to a spatialized variant of the connections model that has been introduced by JG00.

Agents are arranged on a line, according to their index and at unitary intervals so that the geographic

distance between i and j is defined as l(i, j) ≡ |i− j| . Moreover, relying on Debreu’s (1969) hypothesis

according to which closely located players incur lower costs to establish communications, payoffs

linearly decrease with geographic distance. Formally, the net profit received by any agent i is still

given by the standard connections model (equation 3), but where cij is now differently computed.

It is proportional to the geographic distance separating i and j (cij ∝ l (i, j)). Moreover, as a

normalization device, and in order to account for an inverse relation between the costs and the size

of the population, JG00 implicitly assume that, for all n, the costliest possible connection always

costs unity: maxi,j∈N cij ≡ 1. In the linear metric we have maxi,j∈N l(i, j) = l(1, n) = n − 1 and

these assumptions logically imply that

cij = l(i, j)/ (n− 1) . (4)

The analytical predictions regarding network efficiency in this model are summed up in the following

proposition.
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Figure 1: Efficient graphs in the connections model depending on δ and c

Proposition 3 (JG00, Theorem 1).

(i) If
1

n− 1
> δ +

1

n− 1

n−1∑

k=2

(n− k) δk, the unique efficient network is the empty network g∅.

(ii) If δ <
1

n− 1
< δ +

1

n− 1

n−1∑

k=2

(n− k) δk, the unique efficient network is the chain g◦.

Proofs can be found in JG00. A chain g◦ corresponds to a network where all agents are connected

to their immediate geographic neighbors: ∀i, j ∈ N, ij ∈ g◦ iff l(i, j) = 1.

Since this proposition concerns very limited regions of the values of δ, JG00 propose to numeri-

cally explore all possible networks. However, the number of possible networks rapidly becomes very

large with n (see footnote 1) and therefore this technique rapidly meets computational boundaries.

Therefore JG00 restrain themselves to computing efficient networks when n ≤ 7. Their numerical

predictions (see Figure 5 in JG00) are synthesized in Table 14. The network structures mentioned in

this table are defined as follows5: g1 = {12, 23, 24, 34, 45}, gA = {12, 23, 34, 35, 45, 56},

gB = {12, 13, 23, 34, 35, 45, 56}, gC = {13, 23, 34, 35, 45, 46}, gD = {13, 23, 34, 35, 56},

gE = {12, 23, 24, 34, 45, 46, 56, 67}, gF = {12, 13, 23, 34, 35, 45, 56, 57, 67},

gG = {12, 13, 23, 24, 34, 45, 46, 47, 56, 67}, gH = {12, 24, 34, 45, 46, 67}, g⋆⋆ = {14, 24, 34, 45, 46, 47}.

g⋆⋆ is a complete star network of 7 agents with the agent in the middle of the line (agent 4) being

the center of the star.

4JG00 also have some results for n = 3 and 4 which we do not investigate and thus do not report here.
5These structures should be considered as encompassing the miror network obtained by switching identities of all

agents i ∈ N to N + 1 − i.
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n = 5 n = 6 n = 7

δ g δ g δ g

[0, 0.2149] g∅ [0, 0.1726] g∅ [0, 0.1464] g∅

[0.2150, 0.4287] g◦ [0.1727, 0.3141] g◦ [0.1465, 0.2467] g◦

[0.4288, 0.8128] g1 [0.3142, 0.3375] gA [0.2468, 0.3480] gE

[0.8129, 1) g◦ [0.3376, 0.7236] gB [0.3481, 0.4299] gF

[0.7237, 0.8788] gC [0.4300, 0.7886] gG

[0.8789, 0.9306] gD [0.7887, 0.8811] g⋆⋆

[0.9307, 1) g◦ [0.8812, 0.9030] ?

[0.9031, 0.9694] gH

[0.9695, 1) g◦

Table 1: Numerical computations of efficient networks by JG00 for n = 5, 6, 7 and the possible values

of δ. The sign ? refers to an uncharacterized situation.

4 Searching for efficient networks: an approach using Genetic Al-

gorithms

Searching for efficient network structures is in general a difficult analytical task. But, once the payoff

structure is well defined in relation with the connection structure, one is tempted to explore this

question using more heuristic strategies. As a matter of fact, the connection structure of the network

can be expressed as a matrix of bits (1 for connection or 0 for absence of connection) and the payoff

structure can assign a value to each of such matrices. The search for efficient networks can hence

be seen as an optimization problem in the connection-matrix space, i.e. the space of all possible

networks. This optimization problem yields analytical solutions only for simple payoff structures.

We examine here a numerical tool for optimization: genetic algorithms (GA) that have proved their

efficacy in optimization problems where the potential solutions can be represented as binary strings.

Our networks can effectively be quite easily represented as binary strings.

4.1 Representing networks as binary strings

Our problem is to find the networks g which maximize social value π as given by the equation 1 over

the set of all possible networks G. In order to use the GA for this optimization problem, we need to

represent our networks as binary strings (sequences of bits – 1 or 0).

Consider first that any network with n agents (whether directed or not, eventually with self-

connections) can, without loss of generality, be represented by a connection matrix of size n × n

of binary elements. Given that all networks consider here are undirected (i is connected to j iff

j is also connected to i) and that self-connections are excluded, the upper triangular part of this

connection matrix, excluding the diagonal, provides complete information on the network structure.

As a consequence, the vector composed by all the connection bits of this upper triangular part in

some conventionally chosen order sums up the network structure. Thus for a network of n agents,

this vector is a binary string of length L =
(
n2 − n

)
/2.

In a genetic algorithm, undirected networks can hence be formally represented as chromosomes
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defined as sequences of binary elements: A = (a1, a2, ..., aL) with ai ∈ {0, 1} ,∀i ∈ {1, 2, ..., L}.

In the example below with n = 3 agents, the undirected network g = {13, 23} is fully characterized

by the chromosome A = (0, 1, 1) , the length of which is L =
(
32 − 3

)
/2 = 3.

 1

3

21

3

2

→ g = {13, 23} →

1

2

3

1 2 3


0 0 1

0 0 1

1 1 0


→ A = (0, 1, 1)

Once we represent it, we can compute the value of a connection matrix (its fitness) using the

equation 1 and utilize the Genetic Algorithms to search for matrices with the highest value.

4.2 Genetic Algorithms: How do they work?

Genetic algorithms (GA) are numerical optimization techniques developed by John Holland (see

for example Holland (2001), which has initially been published in 1975). GA transpose to other

problems the strategies that the biological evolution has successfully used for exploring complex

fitness landscapes. The search for an optimum by a GA corresponds to the evolution of a population of

candidate solutions through selection, crossover (combination) and mutation (random experiments).

The GA have been used for solving a very large set of problems directly, or indirectly as a component

of a classifier system. Goldberg (1991) gives quite an exhaustive account of the characteristics of the

GA and of their applications (for a more recent survey in French, see Vallée and Yıldızoğlu (2004)).

For applications of the GA as a learning algorithm, see Yıldızoğlu (2002).

procedure evolution program

begin

t← 0

(1) initialize P (t)

(2) evaluate P (t)

while (not termination–condition) do

begin

t← t + 1

(3) select P (t)from P (t− 1)

(4) alter P (t)

(5) evaluate P (t)

end

end

Figure 2: The structure of an evolutionary program (Michalewicz, 1996)

The canonical genetic algorithm makes evolve a population of binary strings (chromosomes com-

posed of 1 and 0). The size of the population m is given. It is the source of one of the strengths of the

8



GA: implicit parallelism (the exploration of the solution space using several candidates in parallel).

The population of chromosomes at step t (a generation) is denoted P (t) = {Aj}t with #P (t) = m,

and ∀t = 1, 2...T with T the given total number of generations. Notice that T is the other source of

the strengths of the GA. The algorithm (randomly) generates an initial population P (0) of candidate

chromosomes which are evaluated at each period using the fitness (value) function. They are used

for composing a new population at the next period P (t + 1). Figure 2 gives the general structure of

an evolutionary algorithm and the GA are part of this family.

( )
( )

( )
( )

12 15

23 20

��������� 11
101|11 101|

= =
→

= =

011| 00 011 |
00

Figure 3: A simple example of crossover operation

Each chromosome has a probability of being selected that is increasing in its fitness. The mem-

bers included in the new population are recombined using a crossover mechanism (see Figure 3).

The crossover operation introduces controlled innovations in the population since it combines the can-

didates already selected in order to invent new candidates with a potentially better fitness. Moreover,

the mutation operator randomly modifies the candidates and introduces some random experiment-

ing in order to more extensively explore the state space and escape local optima. Typically, the

probability of mutation is rather low in comparison with the probability of crossover because other-

wise the disruption introduced by excessive mutations can destruct the hill-climbing capacity of the

population. Finally, an elitism operator can be used which ensures that the best individual of a

population will be carried to the next generation. The Figure 4 gives a deliberately trivial example

of optimization for illustrative purposes.�� ����� 	
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Figure 4: A simple example of genetic algorithm

In our approach, each mutation corresponds either to the creation of a new link in the network

or to the deletion of an existing link. The impact of the crossover is more dramatic: it combines

subnets belonging to two different networks in order to connect them, and create two new networks
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in the population (in replacement of their parents). Our results show below that these two opera-

tions, combined with selection and elitism, provide a very effective way of finding efficient network

structures.

4.3 Genetic Algorithms: Why do they work?

The apparent simplicity of the GA should not lead us to underestimate their power. Even if their

mechanisms are mainly heuristic, analytical results concerning this power have been established in

the literature, under the heading of the schemata theorem that shows that the strength of the GA

comes from its capacity to make evolve schemata in a direction that increases the average fitness of

the population (Chapter 6, Holland, 2001).

A schemata is a general template that can correspond to a large class of different chromosomes.

The schemata is constructed using an alphabet slightly different from the one used for coding specific

chromosomes: the initial alphabet {0, 1} is completed by a third letter {∗} that is also called the don’t

care symbol and that can replace indifferently the other two letters. Hence the schemata 0∗0 can cover

both the chromosomes 000 and 010. The schemata is a tool for representing the general structure

of the chromosome classes (depending on the positions covered by the don’t care symbol). We can

for example distinguish between abstract schemata with many ∗ letters (like ∗ ∗ 1 ∗ ∗) and specific

ones (like 00100 or 11111 that are both covered by the preceding schemata). As a consequence,

the schemata corresponds to the tool that should be used for characterizing the structure of the

population because a schemata can correspond to several chromosomes in the population. The

schemata theorem is based on the observation that the real object of the evolutionary operators

(selection, crossover and mutation) is the schemata.

The selection operator implies that each schemata in the population will diffuse with a speed that

is equal to the ratio of the average fitness of the schemata to the average fitness in the population

(Holland, 2001). Moreover this diffusion takes place in parallel for all schemata in the population (if

the length of the chromosomes is L and the size of the population is m, there is up to m2L schemata

in the population) and this establishes the implicit parallelism of the GA. As a consequence, the

selection operator gives an exponentially increasing space to the schemata with a fitness that is

higher than the average fitness in the population and, symmetrically, an exponentially decreasing

space to the schemata below the average. Without any novelty, the first kind of schemata end up by

dominating the population and the latter becomes homogenous quite quickly. But, nothing assures

that this population contains optimal solutions.

Novelty is necessary for exploring the state space and the genetic operators (crossover and muta-

tion) are necessary for introducing novelty. If we define the order of the schemata as the number of

specific bits and the defining length of the schemata as the distance between the two outmost specific

bits6, the schemata theorem establishes that schemata of low order with a small defining length and

above the average fitness will diffuse quickly in the population. The schemata theorem is the major

results behind the GA but, complementary specific results have been more recently established using

approaches based on quantitative genetics or Markov chains (see Mitchell (1996), chapter 4, for a

presentation of the theoretical foundations of GA and Dawid (1999)).

6For the schemata 1 ∗ 0 ∗ 1, the order is 3 and the defining distance is 5 − 1 = 4.
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5 Robustness assessment of the GA for computing efficient net-

works

We test whether the GA is a robust tool for finding out the optimal social network structures. To

this end, we use the GA to determine the optimal network structures in configurations for which

analytical results do exist.

The Java JGAP7 library is used to implement the GA based on binary chromosomes. The GA

that we use is elitist and its probability of crossover and mutation are both computed by JGAP8.

The relevance of the GA as a search algorithm for efficient networks is tested in the two stylized

models presented in Section 3: the coauthor model, the connections model and the linear spatialized

connection model.

For each model, we execute a fixed number of simulations (NSIM) in order to reasonably cover

the parameter space (possible configurations are explored using Monte Carlo procedures for randomly

drawing all significant parameters). For each of the NSIM configurations, the GA is run a given

number of generations in order to obtain the final candidate network (the efficient network predicted

by the GA). We confront this network structure with the one that is analytically determined. Ran-

domly drawn configurations (values between 50 and 500) of the parameters of the GA (m the number

of chromosomes in the population and T the number of generations) were tried so as to assess their

impact on the performance of the GA. Their impact is only reported in the connections model since

they do not affect significantly the GA performance for the two other models.

5.1 In the coauthor model

We use here GA for computing the optimal network type in the coauthor model of JW96, extended in

Carayol and Roux (2004), as presented in Section 3. We run 500 simulations using these specifications

and with even n ∈ [6, 20] , and c ∈ [0, 4]. The results of the simulations are given in Figure 5. These

results are perfectly in accordance with the Proposition 1. We consequently get a rate of success of

100% with the GA. Figure 6 gives some examples of the optimal networks found by the GA.

Proposition 4 The GA is always able to find efficient networks in the coauthor model (with even n

such that 5 < n ≤ 20 and with c ∈ [0, 4]).

5.2 In the connections model

As we have seen in Section 3, the connections model admits three different types of efficient networks:

the empty graph
(
g∅

)
, the complete graph

(
gN

)
and the star (g⋆), depending on the parameters values

(c, δ and n).

As a first step, we compute 1, 000 uniform independent random draws of the model parameters

(the number of agents n and the payoffs parameters c and δ), in predefined value spaces (5 ≤

n < 20; c, δ ∈ ]0, 1[). For each combination, we compute the efficient network according to the

Proposition 2. We then compare the prediction of the GA with the theoretical efficient network in

order to check the robustness of the GA method.
7http://jgap.sourceforge.net/
8Probability of crossover is 0.5 and the probability of mutation is 1/15.
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Optimal network type in the coauthors model: 
0 = empty network

2 = pair-wise connections
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Figure 5: Optimal networks in the coauthor model
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Figure 6: Typical efficient networks obtained for the coauthor model: the empty network when c > 3

and dissociated pairs when c < 3.
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Table 2 provides the share of correct predictions of the GA for different values of n and for the

different optimal network structures (that should be predicted). The results are summarized in the

following propositions.

Proposition 5 In the connections model, both when g∅ or gN is the efficient structure, the GA

remarkably finds them whatever n (with 5 ≤ n < 20). It is only when g⋆ is the efficient network and

n increases that the GA might provide some incorrect estimations of the efficient networks.

For example, when n = 12, the GA is deceived in 3% of the cases corresponding to a star as the

optimal network.

Proposition 6 The probability that the GA provides a correct prediction of the connections model

globally decreases with the number of agents n, whereas it increases with the number of chromosomes

m and with the number of generations T .

Indeed, errors are partly due to an inefficient GA characterized by too few chromosomes or

too few generations. Nevertheless, we cannot establish a monotonic relationship between these two

dimensions of the GA and its effectiveness. We just empirically observe a region of best effectiveness

around 300 for the number of chromosomes and the number of generations. We hence use this value

in the next point that we explore.

Efficient network g⋆ g∅ gN

# of agents

5 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1

9 0.98 1 1

10 1 1 1

11 1 1 1

12 0.97 1 1

13 0.87 1 1

14 0.97 1 1

15 0.87 1 1

16 0.76 1 1

17 0.67 1 1

18 0.76 1 1

19 0.71 1 1

Average 0.90 1 1

Table 2: Proportion of correctly predicted efficient networks depending on the number of agents and

the efficient network

In order to explore more in detail these deceiving cases, we run 500 simulation experiments

exclusively dedicated to the randomly drawn cases for which the star (g⋆) is the optimal network.
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As explained above, the GA is used from this point on with m = T = 300. These experiments are

reported in Table 3. We observe therein that when n < 12, the GA offers only correct predictions.

When n ≥ 12 the GA is not always able to find the correct graph shape (g∗). The probability of

error, conditional to 20 > n ≥ 12, is 0.126. The non linearity of the network value state space leads

the GA to stabilize on local maxima. Nevertheless, even when deceived, the GA finds networks that

have an average social value equal to 98.66% the social value of g∗.

Share of good # of

# of agents predictions observations

5 1 25

6 1 29

7 1 31

8 1 31

9 1 30

10 1 36

11 1 32

12 0.94 35

13 0.93 27

14 0.95 39

15 0.90 41

16 0.82 33

17 0.69 39

18 0.92 37

19 0.86 35

Average 0.90 500

Table 3: Proportion of correctly predicted g∗ configurations with m = T = 300

In order to better understand the nature of the deceptive configuration, we address the following

question: are mistaken predictions uniformly distributed over the state space (c, δ) for which stars

are optimal networks ? The Figure 7 represents all experiments performed for which the star is

the optimal network in the (c, δ) space, in accordance with the analytical predictions summed up

in Figure 1. The black dots on this figure represent the experiments for which the GA fails. If we

compare the position of these dots on the graph with the borders in Figure 7, it clearly appears

that the mistakes are not uniformly distributed, but located close to the borders (C1 and C2) of

the regions where optimal networks are different. Given that the crossover and mutation operators

explore the state-space in a discontinuous manner, they make the GA jump from one side of the

border to the other, making very difficult the finding of the optimal graph. Everywhere else, the GA

is efficient in finding the efficient star network.

Proposition 7 When g∗ is the optimal network of the connections model, the GA may fail to sys-

tematically find it when c and δ take values close from those that generate different optimal networks.

In these cases, the predicted networks still have an average social value equal to nearly 99% the social

value of g∗.
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Figure 7: Experiments when the g∗ network is efficient.

One may finally wonder about the structure of the inefficient networks that are found by the

GA. A systematic analysis of the structural properties of inefficient networks leads to the following

threefold conclusion. First, all inefficient networks which correspond to points in the space (c, δ) close

to the frontier between the two regions where the empty graph and the star networks are efficient9,

are empty networks. Secondly, when δ is close to one and c is also very high, the GA finds networks

that are structurally very similar to the star network, with one or two agents being connected to

an agent who is not the center of the network. Such typical network is reproduced in left graph

of Figure 8. The social value generated by such a typical network is very close to the one of the

star network since, when δ is close to 1, direct and indirect connections generate nearly the same

value. Finally, when the experiment corresponds to a couple (c, δ) which is close to the frontier with

the region where the complete network is efficient10, two types of inefficient networks appear to be

selected. Two typical networks are reproduced in the central and the right graphs of Figure 8. The

first one is composed of two main (non complete) stars connected with nearly all other agents who

are never directly connected the one to the other (there are eventually some other smaller stars in

the network). The second one appears to be a structural mix between the former network and a

random graph.

5.3 In the linear spatialized connections model

We now confront the networks predicted by the GA to both the analytical results in Proposition

3 and numerical computations summarized in Table 1. Again, the GA was ran 1, 000 times using

random integer values of n such that 5 ≤ n < 20 and with random values of δ ∈ ]0, 1[ . We first

9Given by c = δ + n−2
2

δ2.
10Given by c = δ − δ2.
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Figure 8: Some typical inefficient networks found by the GA at the internal frontiers of the region

where g∗ is the efficient network

find that the GA correctly founds all but one efficient networks among the runs that correspond to

configurations covered by Proposition 3 11.

Among the runs which are covered by the numerical computations of JG00 (when n = 5, 6 or 7;

185 runs), all their predictions are confirmed by the GA, with the following exceptions (see Figure 9):

• gC is not found by the GA, which instead selects gC′ = gC − 46 + 56. Simple computations

confirmed that indeed ∀δ ∈ ]0, 1[ , π
(
gC′

)
> π

(
gC

)
.

• gG is not found by the GA, which instead selects gG′ = gG − 13 + 14. Simple computations

confirm that π
(
gG′

)
> π

(
gG

)
for all δ ∈ ]0.277, 0.936[ , a region which includes the one indicated

by JG00 as corresponding to gG as the efficient network (see Table 1).

• gD is not found by the GA, which instead selects gD′ = gD − 13 + 12. Simple computations

confirm that π
(
gD′

)
> π

(
gD

)
when δ > 0.919, region in which our randomly drawn values of

δ are comprised. Of course, our results do not imply that gD is not the efficient network when

δ ∈ [0.8789, 0.919] .

• g2⋆ = {13, 23, 34, 35, 45, 56, 57} , a network constituted by two interlocked local stars (see Fig-

ure 9), is found for n = 7 and δ ∈ [0.835, 0.907] . In this region of δ, g2⋆ dominates g⋆⋆ and

gH , and it must be chosen even when the efficient network remains unspecified in JG00 (region

marked by an ?)12.

Proposition 8 In the linear spatialized connection model, the GA computations nearly always corre-

spond to the predictions of Proposition 3 and corroborate the predictions of JG00. When the networks

generated by the GA are different than the networks found by JG00, their social surplus is greater.

6 Efficient networks in the linear spatialized connections model

We now turn to the use of the GA technique to perform the first fully exploratory analysis of the

efficient networks in the linear spatialized connection model of JG00. The question we would like

11For instance, when n = 10, Proposition 3 yields that if δ < 0.10114, the empty network is the unique efficient

network, and if 0.10114 < δ < 0.11111, the chain network is the only efficient network.
12g⋆⋆ is found as the most efficient network when δ ∈ [0.789, 0.810] , and gH is also efficient when δ ∈ [0.924, 0.969].
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Figure 9: Original networks found by the GA as efficient for specific values of δ

to address here is related to the issue of the optimal creation of inter-individual connections and

their distribution among agents. Since the model exhibits positive externalities that deteriorate

geometrically with relational distance and bond costs that increase with linear exogenous distance,

we especially wonder to what extent the efficient networks need to be organized around central agents

or need to be locally connected. To put it differently, should the network be structured with one agent

in the middle who mediates the externalities between all others in a similar fashion as g⋆⋆ or even as

gG′? Should the network rather be locally coordinated with small stars in more peripheral positions

as in g2⋆? Should instead connections be only locally formed and thus more equally distributed

among agents? Should these various forms coexist in some extent? The answers to these questions of

course strongly depend on the decay parameter δ which determines the extent to which the network

is conducive to positive externalities.

We are willing to address these questions synthetically for different sizes of the population. There-

fore, we propose to rely on the following four simple indicators, to be computed for each GA efficient

network, that grasp most of the structural attributes we are interested in:

∆ (g) =
1

n

∑
i∈N

ηi (g)

(n− 1)
, (5)

Γ (g) =
1

(n− 1)
max
i∈N

ηi (g) , (6)

Ω (g) =
1

(n− 1)
second max

i∈N
ηi (g) , (7)

Φ (g) =
1

(n− 1)

∑
ij∈g

l (i, j) . (8)

∆ (g) gives the average number of links per agent relative to the maximum number of links any

agent can sustain: (n − 1)13. Γ (g) gives the size of the largest neighborhood on network g again

scaled by the size of the largest possible neighborhood in a population of n agents. Ω (g) gives the

size of the second largest neighborhood on g, again scaled by (n− 1). Lastly, Φ (g) is the average

geographic distance in the network g, scaled by the maximum geographic distance when there are n

agents positioned in our linear world, that is the distance between the two agents located at the far

ends of the line: (n− 1). All indicators are positive and they can not exceed the unity.

13It is equal to twice the density of the network as it is usually refered to in the literature on social networks. This

density is equal to η (g) / (n (n − 1)) .
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Let us now explain how the simultaneous analysis of the four indexes provides synthetical infor-

mation on the structuration of networks. A high value for Γ (g) and simultaneously a much lower

value for both Ω (g) and ∆ (g) indicate a structuration of the connections around a central agent. On

the contrary, if the network is not globally structured around one central agent, and if the two most

connected agents have a similar number of neighbors, then typically Γ (g) ≈ Ω (g). If, in addition

Ω (g) ≫ ∆ (g), then one can conclude that there are several (at least two) stars in the network.

Otherwise, if Ω (g) ≈ ∆ (g) , then agents are quite equal in the size of their neighborhoods. Lastly,

if Φ (g) is low, then it can be inferred that connections are mainly established in the geographical

neighborhoods.
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Figure 10: Median band values of Γ, Ω, ∆ and Φ computed for 1000 GA-efficient networks with

random integer values of n between 5 and 19 (inclusive) and with random values of δ ∈]0, 1[

We draw in Figure 10 the median bands of these indicators. Let us examine how do efficient

networks structures evolve with δ. When δ increases from 0 to 0.2, we observe that Γ (g) ≈ Ω (g) ≈

∆ (g) and, simultaneously, that Φ (g) remains low. That indicates that no star has been formed and

connections are mainly local. In this region, Φ (g) increases with δ because the density of efficient

networks increases: once connections at distance one are all formed then local density increases by

establishing connections at distance two and so on so forth. When δ increases from 0.2 up to 0.45,

Γ (g) increases up to unity which means that then one agent at least is connected to all others. In

the meantime, Ω (g) increases slowly to reach about 0.5. Both indexes remain on a plateau between

δ ≈ 0.45 and δ ≈ 0.65. In this region, one observes only a slight difference between Ω (g) and ∆ (g) .

In the meantime Φ (g) remains below 0.2 (in other words, the average geographic distance between

any two connected agents is on average equal to twenty percent of the distance between the far ends).

All this indicates that networks are mediated by a central agent who displays positive externalities in

the population. There are no significant secondary stars but a strong local density. It is only when

δ & 0.55 that the network density (grasped through ∆ (g)) begins to decrease. Simultaneously, Φ (g)
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continues to increase. This indicates that the centrality of the star is reinforced because some local

connections have become inefficient and are not formed anymore. When δ ≈ 0.85, the density of

the central agent sharply decreases while the density of the second most connected agent decreases

less sharply. The need for global centralization is much reduced and a small window for more local

centralization appears (in a similar fashion as g2⋆).
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Figure 11: Distributions of ∆,Γ,Φ and Ω

In order to verify that our structural inferences based on the medians are fully consistent with

the raw data, we also rely on regression trees (Venables and Ripley [1999], chapter 10). A regression

tree establishes a hierarchy between independent variables using their contributions to the overall fit(
R2

)
of the regression for a given dependent variable. More exactly, it splits the set of observations

in sub-classes characterized by their value in terms of their contribution to the explained variance.

Regression trees are very flexible in the sense that they do not specify any functional relation between

the explained and the explaining variables. The tree gives a hierarchical sequence of conditions on the
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values of the explaining variables. The stronger the explanatory role of a condition in the classification

of the observed cases, the higher its status on the tree. For each condition, the left branch gives the

cases for which the condition is true and the right branch gives the cases that are compatible with the

complementary condition. Regression trees can hence be used for obtaining a finer and more robust

picture of the influence of δ on the indicators Γ,∆,Φ and Ω. We also introduce n as an explanatory

variable. At the final end of each branch, the numbers respectively give the expected value of the

indicator under the conditions corresponding to this branch and the number of observations that

correspond to these conditions14.

The regression trees, given in Figure 11, firstly confirm that δ is the main factor explaining

efficient network structures whereas n plays a more minor role on the indexes (n does not appear

in the highest branches of the trees)15. This was expected since the indexes were precisely designed

to avoid important effects of population size. Secondly, the detailed study of the impact of δ on

efficient networks structure tend to confirm our initial results. Indeed, δ plays non linearly on Γ,Ω,

and ∆ which first increase reach a max and then decrease. More precisely, we observe that the

maximal expected value of Γ, Ω, and ∆ (prior meeting any branching condition on n) are observed

respectively when δ ∈ [0.3416, 0.9474[ (see Tree (a)), when δ ∈ [0.2201, 0.757[ (see Tree (b)), and

when δ ∈ [0.2476, 0.8529[ (see Tree (d)). As expected also, larger values of Φ are obtained when δ is

greater.

Our results lead us to interpret the structure of efficient networks as resulting (for each δ) from

two interrelated trade-offs that are simultaneously operated by the maximization of social returns.

The first relates to the creation of links, while the second corresponds to their allocation among

agents. These two phenomena exhibit similar non linear patterns as δ increases. As regards the first

trade-off, when δ remains below 0.55, networks become denser with δ because both the social returns

to the formation of connections increase with δ and the difference between the social returns to

more direct connections and more indirect connections tend to increase (thus favoring the formation

of “overlapping” connections). On the contrary, when δ & 0.55, though the gross returns to link

formation still increase, the number of links tends to decrease with δ because the social returns to more

indirect connections tend to become equal to those of more direct connections. Thus “overlapping”

bonds tend to become redundant and efficient networks are less and less dense.

The second trade-off, which deals with the distribution of links among agents, is in fact equivalent

to the issue of network centralization vs. local connectivity. It is when δ takes intermediary values

that the social returns to centralization are the greatest. Indeed, a central agent (connected to all

others) allows all other agents to gain at least δ2 from all the agents with whom they are not directly

connected. When δ is low, the gross social returns to connections are low and remain below the costs

of distant connections. When δ is very high (close to unity), though the gross social returns of direct

connections are large, indirect connections obtained through cheap local links tend to provide similar

14The reader should notice that the variable n at the end of the branches of the trees has a different signification

from in the rest of the article: It only corresponds to the number of cases. Unfortunately, this is a default notation in

R-project and it cannot be customized.
15If n plays a (secondary) role on the global structuration of efficient networks, it appears to intervene around the

threshold of n = 7, a value which often intervenes in the third level ramifications of the trees (cf. Figure 11). This

tends to indicate that the cases studied by JG00 might be quite specific since they correspond to n ≤ 7.
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social returns because the spillovers do not much depend on social distance any more. Then, when

either δ is low or high, local connections of lower cost are preferably selected against costly distant

ones which are necessary to centralization.

The simultaneity of the two trade-offs makes that when efficient networks have a central agent

(when δ is intermediate), they are also much denser, especially in local areas. However, there is a

slight shift between the two trade-offs as δ varies, which produces specific network structures for

certain values of δ. When δ ≈ 0.2, the need for centralization is still not there while efficient networks

are already quite dense. Efficient networks are then strongly only locally connected. When δ ≈ 0.85,

efficient networks have a low connectivity while the need for centralization is still strong. This

configuration gives a small window for local stars to appear.

Proposition 9 In the linear spatialized connections model, when the decay of externalities is either

very low (δ close to 0) or very high (δ close to 1), networks should be only locally connected and no

central agent is needed. In intermediate cases, efficient networks are both centrally structured around

some coordinating agent and locally connected. On the borders between these three configurations, the

efficient networks are either only locally connected without any central coordination (when δ ≈ 0.2)

or coordinated by local stars (when δ ≈ 0.85).

7 Conclusions

One critical problem faced by economists interested in networks formation is the complete charac-

terization of the efficient networks for non trivial individual payoffs functions. We test in this paper

the relevance and the performances of an original method, namely the genetic algorithms (GA), for

computing such efficient network structures. In order to assess the efficacy of this technique, we com-

pute GA-efficient networks in models for which benchmark results are available. Our results show

that the GA are a powerful tool for network optimization. More precisely, in the coauthor model of

JW96, the GA is able to find the optimal structures in all simulations. In the connections model

of JW96, the GA finds again the efficient network structures but it can be deceived on the borders

between the areas corresponding to two distinct optimal structure (between empty network and the

star, as well as between the complete network and the star). In the interior of these areas, the GA

perfectly determines the relevant optimal network structure. In the linear spatialized connections

model of JG00, the GA performs almost perfectly when analytical results are available and are more

efficient than the numerical techniques employed by JG00 for a limited number of agents.

Then, an explorative use of the GA for computing efficient networks in the linear spatialized con-

nections model allows us to discuss the issue of the efficient structuration of networks. We find that,

depending on the parameter tuning the decay of positive externalities through connections, networks

should be structured quite differently. When the decay is either very low or very high, networks

should be only locally connected and no central agent is needed. When externalities are low, the so-

cial returns to distant connections can not compensate their high costs. When externalities are very

high, centralization becomes not socially desirable anymore since social distance becomes ineffective

on externalities. In between, networks should be both centrally structured around some coordinating

agent and locally connected. Therefore, centralization and local structuration are mostly found to

be complementary rather than exclusive. Nevertheless, it should be noticed that efficient networks
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have very different shape when δ shifts from 0.2 to 0.4. Indeed, they shift from local connectivity

with all agents having the same number of connections and without any central coordination, to the

emergence of a star agent connected to all others while the connectivity of the others remain nearly

constant.

The GA technique may be further employed for exploring the optimal network structures in other

models for which analytical or even computational results on efficient structures can not be provided.

Another obvious application is to systematically compare the structural properties of the emergent

and of the efficient networks (for an exploration see Carayol, Roux and Yıldızoğlu, 2007).
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