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Le triple résultat : Concilier des objectifs écologiques, économiques et sociaux en 
présence de quotas individuels et transférables 

 

Résumé 

Cet article analyse le fonctionnement d’un système de management d’une ressource 
renouvelable fondé sur des quotas individuels et transférables en présence d’agents 
hétérogènes sur leurs coûts et leurs coefficients de capture. Dans un modèle bio-
économique dynamique, nous déterminons sous quelles conditions,  le décideur d’une 
pêcherie peut satisfaire durablement des objectifs de conservation de la ressource, 
d’efficience économique et de maintien  de l’activité de pêche. Nous montrons que la 
viabilité des stratégies de capture totale autorisée dépend du degré d’hétérogénéité des 
exploitants de la ressource, du niveau initial et de la dynamique du stock. En 
particulier, pour un montant de stock initial, nous calculons l’effort maximum possible 
pour un groupe donné d’exploitants et nous calculons le nombre maximum d’exploitant 
actifs possible pour un niveau d’effort garanti. Nous illustrons nos résultats à la 
pêcherie de la langoustine dans le Golfe de Gascogne. 

Mots-clés : Ressource renouvelable, Soutenabilité, Capture Totale Autorisée, Quotas 
Individuels Transférables, Maximin, ensemble de faisabilité 

 

The triple bottom line: Meeting ecological, economic and social goals with 
Individual Transferable Quotas 

Abstract 

This paper deals with the sustainable management of a renewable resource based on 
individual and transferable quotas (ITQs) when agents differ in terms of harvesting 
costs or catching capabilities. In a dynamic bio-economic model, we determine the 
feasibility conditions under which a fishery manager can achieve sustainability 
objectives which simultaneously account for stock renewal, economic efficiency and 
maintenance of fishing activity for the agents along time. We show that the viability of 
quota management strategies based on fixing Total Allowable Catch (TAC) limits 
depends on the degree of heterogeneity of users in the fishery, the current status and the 
dynamics of the stock. In particular for a given stock, we compute the maximin effort for 
a given set of agents and we derive the maximal number of active agents for a given 
guaranteed effort. An application to the nephrops fishery in the Bay of Biscay illustrates 
the results. 
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Abstract

This paper deals with the sustainable management of a renewable resource
based on individual and transferable quotas (ITQs) when agents differ in
terms of harvesting costs or catching capabilities. In a dynamic bio-economic
model, we determine the feasibility conditions under which a fishery man-
ager can achieve sustainability objectives which simultaneously account for
stock renewal, economic efficiency and maintenance of fishing activity for
the agents along time. We show that the viability of quota management
strategies based on fixing Total Allowable Catch (TAC) limits depends on
the degree of heterogeneity of users in the fishery, the current status and the
dynamics of the stock. In particular for a given stock, we compute the max-
imin effort for a given set of agents and we derive the maximal number of
active agents for a given guaranteed effort. An application to the nephrops
fishery in the Bay of Biscay illustrates the results.

Keywords: Renewable resource; Sustainability; Total allowable catch;
Individual and transferable quotas, maximin, feasibility set.
JEL Classification: Q22.

1. Introduction

Numerous stocks of renewable resources are under extreme pressure
worldwide. Nowhere is this more obvious than in marine fisheries (Garcia &
Grainger, 2005). A key reason for this is the common pool status of marine
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fish stocks, which in the absence of dedicated access regulations, leads to the
existence of incentives for fishing firms to invest in fishing capacity beyond
collectively efficient (Gordon, 1954). This results in increased pressure on
regulating agencies to accept higher exploitation rates of fish stocks, some-
times beyond sustainable levels. It has led major to the recognition that
access regulations are an indispensable complement to traditional conserva-
tion regulations, in guiding resources use towards more sustainable paths
that respect the ecological, economic and social goals of the triple bottom
line (FAO, 2008).

Total Allowable Catch (TAC) limitations have been used extensively as
conservation measures in fisheries management, as a way to keep annual
harvest of fish resources to levels ensuring the long term sustainability of
fish stocks and fisheries. These approaches have however proved insufficient
to ensure the economic health of fisheries, because without dedicated catch
shares ”race to fish” conditions led to encourage short-term economic views,
driving fishers to continually increase their fishing capacity, and leading to
economic inefficiency (Kompas et al, 2004). Restricting access to fisheries
and allocating shares of the TAC as secure harvesting privileges to fishers
has been proposed as a way of solving this problem (Grafton et al, 2006;
Branch, 2008). Assigning harvest rights is expected to create an incentive
for fishers to minimize the cost and effort associated with catching their
TAC share while at the same time choosing fishing strategies that maximize
their revenue (Grafton et al, 2006; Hamon et al, 2009). With costs and
fishing abilities varying among fishers, the addition of transferability of in-
dividual quotas (ITQs) allows fishers to choose between continuing to fish or
transferring (by sale or lease) their quota holdings to other, more efficient,
fishers. ITQs thus offer a decentralized method of allocating catch possi-
bilities within fisheries which should promote efficient resource use (Clark,
1990). Reviews of the experience with ITQs in fisheries have shown that
they are increasingly being adapted, and that this has been associated with
improved status of fish stocks and levels of catches (see e.g. Newell et al.
(2005) for the New Zealand case, or Costello et al (2008)).

In contexts where excess capacity in the fishery exists, introducing ITQs
should lead to a decrease in fishing capacity as catch privileges are trans-
ferred to the more efficient fishers (Kompas & Che, 2005). Although an
expected (and to some extent sought for) impact, this effect has turned out
to be one of the key points of debate on the opportunity and effectiveness
of ITQ approaches to access regulation in fisheries (Pinkerton & Edwards,
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2009). Indeed, an immediate consequence of allowing individual quotas to
be transferred in contexts where excess capacity existed was a rapid reduc-
tion in the nominal fishing capacity, as measured by, e.g. the number of
registered vessels and fishermen in a fishery1, but also of the number of ac-
tive fishers and firms. The resulting concentration of fishing privileges in the
hands of smaller groups, and reduced size of fishing activities in coastal ar-
eas have been considered as an important social consequence of management
schemes in which ITQs have been adopted (Copes, 1986). In New Zealand
Newell et al. (2005) reported an overall decline in the number of market par-
ticipants after the launch of the ITQ system in 1986. This social dimension
has indeed become one of the first and foremost debated dimensions of mov-
ing to tradeable catch privileges in fisheries. In some cases, these expected
social impacts are considered important enough that they will outweigh the
expected ecological and economic benefits of the regulations, leading to the
feasibility of their implementation being questioned. The EU consultation
on “rights-based” fisheries management in the new common fisheries policy
illustrates this point (Anonymous, 2007).

There have been several approaches to modeling ITQs in fisheries, rang-
ing from analytical approaches based on simplified models of a fishery (Clark,
2006; Heaps, 2003) and Linear Programming approaches (Lanfersieck &
Squires, 1992), through models that use numerical simulation (Dupont, 2000;
Guyader, 2002; Guyader & Thebaud, 2001; Little et al, 2009). Despite the
fact that social considerations may have a strong influence on the possibility
for policy makers to adopt ITQs as access regulation measures, these have
only rarely been explicitly included as an objective or a constraint in the tra-
ditional bio-economic modeling approaches. This is the case for instance in
Heaps (2003) who examined how a change in the biomass of the fish stock
affects the number of participants in a fishery managed with a TAC and
ITQs. Guyader & Thebaud (2001) considered the impact of social factors
regarding distributional issues in determining participation of fishing firms
in a fishery and the associated quota market. Fulton et al (2010) consid-
ered the role of social networks in the operation of fisheries quota markets.
However, little work has been done on the interaction between the social
objectives and the economic and biological objectives which a policy maker
may pursue in an ITQ dynamic setting.

1In a number of cases, however, this was shown to merely reflect the eradication of
latent fishing capacity and fishing licences.
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The aim of this paper is specifically to address the tradeoffs between the
conservation, economic efficiency and social objectives in an ITQ managed
system. To deal with this issue, we develop a dynamic bio-economic model
coupled to a weak invariance (Clarke et al, 1995) or viable control method
(Aubin, 1990). This method focuses on inter-temporal feasible paths, and
aims at identifying the conditions that allow desirable objectives or con-
straints to be fulfilled over time, considering both present and future states
(Bene et al, 2001; Baumgartner & Quaas, 2009; Martinet, 2010). As em-
phasized in Martinet & Doyen (2007) or DeLara & Doyen (2008), viable
control and weak invariance is closely related to the maximin (Rawlsian)
approach with respect to intergenerational equity. This approach has been
applied to renewable resources management and especially to fisheries (see,
e.g. Bene et al (2001); Eisenack et al (2006); Martinet et al. (2007)), but also
to broader (eco)-system dynamics (Cury et al, 2005; Doyen et al, 2007). Re-
lationships between sustainable management objectives and reference points
as adopted in the ices precautionary approach are discussed in DeLara et

al (2007). Here this approach allows us to exhibit the feasibility conditions
under which a manager can achieve economic, social and biological objec-
tives in a fishery managed under ITQs, considering both present and future
states of the renewable resource system.

The paper is structured as follows. Section 2 is devoted to the descrip-
tion of the dynamic bio-economic model together with the profitability and
social constraints. Section 3 provides the results related to the feasible quota
policies, the maximum number of active users and their effort with respect
to the level of agent’s heterogeneity and the level of the resource. An appli-
cation to the nephrops fishery in the Bay of Biscay illustrates the results in
section 4. The last section concludes.

2. The bio-economic model

2.1. The resource dynamics

A renewable resource is described by its state (e.g. biomass or density)
x(t) ∈ IR at time t. If the amount removed Q(t) is caught at the beginning
of each time step, the dynamics of the exploited resource x(.) is given by
the escapement function:

x(t+ 1) = f(x(t)−Q(t)) (1)
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where f is assumed continuous, increasing and zero at the origin. Since the
amount caught cannot exceed the resource stock, a scarcity constraint holds:

0 ≤ Q(t) ≤ x(t). (2)

2.2. The ITQ market:

At the beginning of each period t, a regulator allocates a total allowable
catch (TAC) among the n agents (vessels). The supply of quota is:

Q(t) =

n
∑

i=1

Q−
i (t)

where Q−
i (t) is the initial amount of quota given to agent i. We note Qi(t)

the amount of quota held by agent i after trade. We assume that quotas can
freely be traded on a lease market and that inter-temporal trade of quotas
is not allowed2. The demand for quota is derived as the sum of the optimal
amount of harvest of the n agents:

H∗(t) =

n
∑

i=1

H∗
i (t).

The quota market clearing condition is given by

Q(t) = H∗(t). (3)

Agents are assumed to be price takers in the output market. The quota
price is denoted by m(t) and the price of the resource by p. The quota
demand of an agent is obtained by maximizing its profits with respect to its
effort Ei(t) (measured in day at sea) under the constraint that its amount
of harvest Hi(t) is equal to its quota demand Qi(t). Profit is defined as:

Πi(Ei(t), x(t)) = pHi(t)− Ci(Ei(t))−m(t)(Hi(t)−Q−
i (t)). (4)

The harvest function and the quadratic cost function inspired by Clark
(2006) (p 163) are given by:

Hi(t) = qiEi(t)x(t) (5)

Ci(Ei) = c0,i + c1,iEi +
c2,i
2

E2
i (6)

2The question of the initial allocation of ITQs is beyond the scope of the paper.
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where qi is the catchability constant and c0,i, c1,i and c2,i the cost parameters.
The agents are supposed to optimize their individual profit as follows:

max
Ei≥0

Πi(Ei, x(t)).

Applying first order optimality conditions and assuming for a while that the
optimal effort E∗

i (t) of agent i is positive, we obtain the individual effort

E∗
i (t) =

1

c2,i
((p−m(t)) qix(t)− c1,i) (7)

and the associated amount of harvest

H∗
i (t) = qiE

∗
i (t)x(t) =

1

c2,i
((p−m(t)) qix(t)− c1,i) qix(t).

The demand for quota is the sum of individual harvests across all agents

H∗(t) =

n
∑

i=1

H∗
i (t) = x(t)

[

(p−m(t)) x(t)

n
∑

i=1

q2i
c2,i
−

n
∑

i=1

c1,iqi
c2,i

]

.

Setting

α =

n
∑

i=1

q2i
c2,i

;β =

n
∑

i=1

c1,iqi
c2,i

we obtain
H∗(t) = x(t) [(p−m(t)) x(t)α− β] . (8)

From the quota market clearing condition (3), the equilibrium quota price
is

m∗(Q(t), x(t)) = p−
Q(t)
x(t) + β

x(t)α
. (9)

Thus, a rise in the quota supply implies a fall in the quota price asm∗
Q(Q,x) <

0. An increase in the stock at a given quota supply implies a rise in
the amount of harvest for a given effort creating an incentive for all the
agents to buy more quotas. This yields an increase for the quota price and
m∗

x(Q,x) > 0.
If a positive quota demand exists, then a unique quota pricem∗(Q(t), x(t))

should exist such that m∗(Q(t), x(t)) ∈ [0, p[. When the quota price m(t) is
greater than the product price p, the demand for quota is nil. The positivity
condition on m∗(Q(t), x(t)) implies a state-control constraint

x(t)(px(t)α − β) ≥ Q(t). (10)
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Combining (10)this with the scarcity constraint (2), we find that this entails
the stock constraint

x(t) ≥ β

pα
.

This result can be compared to the definition of the bionomic equilibrium
stock level obtained by Clark (2006, p81) in the case of a homogeneous
fishing fleet. In our case, a positive quota price implies that the stock is
higher than the level at which the profitability of fishing would be nil, which
is the open access equilibrium stock level.

2.3. Social constraint:

The model so far shows conditions which are needed to maximize the eco-
nomic return from the fishery. Managing for the triple bottom line requires
that social and biological constraints also be considered. As shown by Bene
et al (2001); Martinet et al. (2007), the existence of an economic viability
constraint in a fishery determines a stock viability constraint, as a minimum
stock size required to maintain sustainable levels of catches and rent above
a viable level. In an ITQ system, where the initial situation is one of excess
capacity, one may observe a reduction in the number of participants leading
to social disruption beyond acceptable levels. To account for this, a social
constraint may thus be introduced on acceptable management decisions. An
extreme approach to this is that the policy ensures that all n agents initially
present remain active in the fishery. This will allow the levels of economic
impacts associated to the fishery (in terms e.g. of employment on board
vessels and land-based activity, and the induced upstream and downstream
effects) to be maintained over time. Formally, we introduce a participation
constraint representing the management objective of keeping fishers active:

E∗
i (t) ≥ Elim, ∀i = 1, .., n (11)

where Elim > 0 stands for some guaranteed activity threshold. Substituting
the value of m∗ given by (9) in the optimal effort E∗

i given by (7) and
including this in the social constraint (11) leads to the following expression
for this constraint:





Q(t)
x(t) + β

α



 qi − c1,i ≥ Elimc2,i, ∀i = 1, .., n

or equivalently
Q(t)
x(t) + β

α
≥ max

i

c1,i + c2,iElim

qi
= λ. (12)

7



Thus the participation constraint for all users implies a condition relating
to the maximum cost-efficiency ratio c1,i/qi for the least efficient user. If we
denote by

Fpar = αλ− β ≥ 0 (13)

the fishing mortality rate applied to the stock3 associated to participation
requirements, the previous constraint (12) reads

Q(t) ≥ Fparx(t). (14)

Based on equations (10) and (14) the following inequality applies

Fpar ≤
Q(t)

x(t)
≤ αpx(t)− β.

From this condition, we derive a critical stock threshold denoted by xlim as

x(t) ≥ Fpar + β

αp
=

λ

p
= xlim. (15)

Note that such a stock constraint (15) also implies that

x(t) > sup
i

c1,i
pqi

= sup
i

xoai (16)

where xoai is the stock size at bionomic equilibrium with open access for the
less efficient user i (Clark, 1990). Hence maintaining all fishers active in a
fishery will require that the stock be maintained at a level that is higher
than the level at which the least efficient fisher would stop fishing.

3. Results

Based on the above model of the fishery and set of constraints, we con-
sider the case in which a policy maker must decide on a set of TAC policies
which ensure that the fishery will respect these constraints. We use the
concept of viability kernel to characterize the sustainability of the system as
in Bene et al (2001); Eisenack et al (2006); Martinet et al. (2007); DeLara

3For n = 1, Fpar = 0 and for n > 1, we have Fpar ≥ 0 since

β =
n∑

i=1

c1,iqi

c2,i
=

n∑

i=1

c1,i

qi

q2i
c2,i

≤

n∑

i=1

λ
q2i
c2,i

= λα.
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et al (2007); DeLara & Doyen (2008); Martinet (2010). This kernel is the
feasibility set of initial stock sizes for which an acceptable regime of quotas
exists and satisfies the constraints put forward in the previous section. Vi-
able quotas are derived from the viability kernel whenever it is not empty.
When it is empty, the problem is re-cast in terms of the maximal number of
viable users or the maximal (maximin) guaranteed effort.

3.1. Viability kernel.

The dynamics x(t + 1) = f(x(t) − Q(t)) is considered in combination
with

• The stock constraint (15): x(t) ≥ xlim,

• The social or participation constraint (14): Q(t) ≥ Fparx(t),

• The economic constraint (10): Q(t) ≤ (pαx(t) − β)x(t).

The feasibility set of initial states allowing these constraints to be satisfied
along time is called the viability kernel. In a infinite horizon context, it can
be defined as follows

Viab =























x0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

for any time horizon T ∈ N

there exists TAC levels Q(t) and resource states x(t)
starting from x0
satisfying all the constraints (10), (14), (15) and dynamics (1)
for time t = 0, 1, . . . , T























.

(17)
As explained in DeLara & Doyen (2008) or Doyen and De Lara (2010), a

dynamic programming structure underlies this viability kernel. We use this
property for the proofs of the following propositions as detailed in section 6.

According to the values of Fpar and the associated xlim, several cases
can be distinguished. We introduce the notation σ(x) for the sustainable or
steady state yield function4 as follows:

h = σ(x) = x− f−1(x).

It is convenient to also introduce the sustainable or steady state mortality
rate Flim related to stock level xlim

Flim =
σ(xlim)

xlim
.

4In the sense that f(x− σ(x)) = x.
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It gives the following proposition for the viability kernel where thresholds
xlim, Flim and Fpar play crucial roles.

Proposition 1. Assume f is continuously increasing and σ(x)/x is de-

creasing. We obtain

• If Flim < Fpar then no viability occurs Viab = ∅.

• If Fpar ≤ Flim then the viability kernel is Viab = [xlim,∞[.

This proposition emphasizes that the viability of quota management
strategies based on ITQ depends on the current status of the stock through
the floor threshold xlim and the dynamics of the stock through mortality rate
Flim. We also elaborate below in paragraphs 3.3, 3.4 and 3.5 the role played
through mortality rate Fpar by both the heterogeneity and the number of
agents together with the guaranteed effort threshold.

Figure 1 shows how these two cases differ in the stock vs. mortality
space (x, F ). The socially induced constraint on the fishing mortality rate
is represented by the horizontal straight line Fpar. The economic constraint
is represented by the increasing linear function αpx−β. The intersection of
these two constraints gives the critical stock xlim. The viability domain cor-
responds to the area which lies above the social constraint and below the eco-
nomic constraint. We also represent the sustainable yield curve σ(x)/x. The
shape of this curve refers to a population dynamics specified by a Beverton-
Holt relation5. The case with no viability depicted in Figure 1a) results from
the position of the participation constraint. The mortality rate required to
ensure a positive effort for the least efficient user is too high, as compared
to the sustainable mortality rate associated with the stock constraint. Since
the intersection of the two constraints is above the sustainable yield curve,
the dynamics of the resource will be strictly decreasing if the participation
constraint is observed and finally the stock constraint xlim will be violated.
Case b) in Figure 1 represents the alternative case. An efficient trading
allowing for the participation of all the users is possible despite their het-
erogeneity. In this case, the viability domain allows increasing or decreasing
stock dynamics depending on whether the system is above or below the
sustainable yield curve.

5With a logistic relation, the equilibrium sustainable yield curve is linear.
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0

Fpar

Flim

σ(x)/x

Mortality rate F

αpx− β

b) Viability

K Stock xxlim

−→ ←−
←− ←−

Figure 1: Two contrasted cases for viability: In case a) when Flim < Fpar, no viability
occurs and the viability kernel Viab = ∅ is empty. In case b) when Flim ≥ Fpar, the
viability kernel is Viab = [xlim,∞[ .

3.2. Viable TACs

We derive the following proposition for the definition of viable TAC
levels, which depend on the structure of harvesting costs, individual catch-
abilities of the agents, together with stock dynamics. The viable controls
are selected in order to maintain the stock within the viability kernel using
the dynamic programming structure explained in DeLara & Doyen (2008).
In other words, the viable quotas Q(t) are chosen to be admissible and to
comply with the additional intertemporal condition f(x(t)−Q(t)) ≥ xlim.

Proposition 2. Assume f is continuously increasing and σ(x)/x is de-

creasing. Assume that Fpar ≤ Flim. Then, for any stock x within the viability

kernel Viab = [xlim,∞[, viable TAC controls lie in the interval

Q(x) ∈ [Fparx, Fpa(x)x]

where precautionary mortality rate Fpa(x) is defined as

Fpa(x) = min

(

αpx− β, 1 − f−1(xlim)

x

)

.

The lower level Q = Fparx of viable TAC basically relies on participation
constraint (14). The upper bound Fpa(x)x is related to the dynamic pro-
gramming condition f(x − Q) ≥ xlim mixed with the economic constraint
(10).
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Figure 2 displays the viable TAC policies when the viability kernel is not
empty. In the stock vs. mortality space (x, F ), the second term of Fpa(x)
denoted by F+(x) can be rewritten as

F+(x) = 1− xlim
x

(1− Flim)

with Flim < 1. It can be shown that F+(x) is increasing and concave.6 The
viability quota domain corresponds to the area which lies above the social
constraint and below the precautionary mortality rate.

-

6

?

0

Fpar

Stock x

F+(x)

αpx− β

−β

σ(x)

x

Mortality rate F

Kxlim

←−

−→

Figure 2: Feasible or viable mortalities [Fpar, Fpa(x)] (hatched) as a (multi)function of
stock x. Stock has to lie within the viability kernel Viab and to be larger than xlim.

It turns out that several TAC policies may exist, that allow distinct
strategies and trade-offs between the biological aims of stock conservation
and the economic aims of rent maximisation, while also respecting the social
constraint. The set of TAC policies can be rewritten as

Q(x) = (ωFparx+ (1− ω)Fpa(x)) x

with 0 ≤ ω ≤ 1. High values of ω refer to an ecological conservation view-
point since they favor the resource. Low values of ω promote current catches

6We have F+(x) < 0 for x → 0, F+(x) = Flim for x = xlim and F+(x) → 1 for x → ∞.
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and rent. Mixed strategies can also be implemented. However the highest
TAC given by F+(x) can only be implemented once a time since

x(t+ 1) = f (x(t) (1− F+(x))) = f (xlim (1− Flim)) = xlim.

A comparison with usual MSY or MEY quotas is proposed in the exam-
ple of section 4.

3.3. Heterogeneity of agents alters the viability

The role played by heterogeneity among the agents can be analysed via
the efficiency parameter λ already defined in equation (12) by

λ = max
i

c1,i + c2,iElim

qi
.

The more the agents differ in efficiency terms (typically through usual open-
access levels

c1,i
qi

), the more λ is high. Following from the characterization of
the viability kernel in Proposition 1, we can also evaluate viability through
the index:

V = Flim − Fpar.

Indeed, such a V has positive values whenever viability occurs as the viability
kernel is not empty while V has negative values whenever there is an empty
kernel. This viability index V depends on the heterogeneity parameter λ
through the relation

V (λ) = pλ−1σ(λp−1)− αλ+ β.

In fact, heterogeneity weakens the viability of ITQ system, in the following
sense.

Proposition 3. Assume f is continuously increasing and σ(x)/x is de-

creasing and smooth. Then V is decreasing with respect to λ:

d

dλ
V (λ) ≤ 0.

To prove this last statement, we compute the derivative of V with respect
to λ. We obtain

d

dλ
V (λ) =

d

dx

σ(x)

x
p−1 − α.

And note that the function σ(x)/x is decreasing and α is positive or null.
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3.4. Maximal guaranteed effort

The largest value for the guaranteed effort Elim given a current state x
is defined as follows:

E∗(x) = max (Elim ≥ 0 | x ∈ Viab) .

As pointed out in DeLara & Doyen (2008); Martinet & Doyen (2007); Mar-
tinet (2010), this is strongly related to the maximin approach. Using the
characterization of the viability kernel in Proposition 1, we obtain the fol-
lowing result involving the open access levels xoai defined in (16).

Proposition 4. Assume f is continuously increasing and σ(x)/x is de-

creasing. Then

E∗(x) =























0 if x ≤ max
i

xoai

min
i

pqix− c1,i
c2,i

if max
i

xoai ≤ x ≤ V −1(0)

min
i

pqiV
−1(0)− c1,i
c2,i

if x ≥ V −1(0)

where the function V is defined by V (x) = σ(x)x−1 − (αpx− β).

The assertion is proved in section 6. Figure 3 displays the behavior
of the maximin function E∗(x). It is worth pointing out that a difficulty
for viability occurs whenever such maximin effort E∗(x) is zero. This can
happen when the resource stock is lower than the largest open access level
xoai =

c1,i
pqi

among the agents. In other words, no guaranteed effort can be
achieved if inefficiency characterizes the exploitation of the resource.
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xoai

Effort Elim

V −1(0)

E∗

Figure 3: The maximin effort level E∗(x) with respect to the stock x.

3.5. Number of active agents

The viability kernel is empty when Fpar > Flim. This can occur when
the desired guaranteed effort Elim is too stringent regarding the maximin
level E∗(x) or when the maximin level E∗(x) is zero. In these cases, the
policy maker knows that it will not be feasible to respect the participation
constraint for all agents and maintain the less efficient users active in the
fishery, given the stock level x and the heterogeneity amongst users. His
problem can be re-cast in terms of the maximal number of viable users de-
noted by n∗(x) that the system could allow to remain active. This maximal
number of viable agents is defined as follows

n∗(x) = max

(

a ∈ {0, . . . , n}
∣

∣

∣

∣

x ∈ Viab(a)

)

where Viab(a) means the viability kernel associated with a ≤ n agents
supposed to be ranked according to

c1,1
q1
≤ c1,2

q2
≤ . . . ≤ c1,a

qa
.

Based on Proposition 1, we can characterize this maximal number of active
fishers through the adaptation of critical thresholds Fpar(a), xlim(a) and
Flim(a). They need to be defined as follows























Fpar(a) = α(a)λ(a) − β(a)

xlim(a) =
λ(a)

p

Flim(a) =
σ(xlim(a))

xlim(a)
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with

α(a) =

a
∑

i=1

q2i
c2,i

, β(a) =

a
∑

i=1

c1,iqi
c2,i

, λ(a) = max
i=1,.,a

c1,i + c2,iElim

qi
.

Based on this, we derive the following proposition.

Proposition 5. Assume f is continuously increasing and σ(x)/x is de-

creasing. Then

n∗(x) = max

(

a ≤ n

∣

∣

∣

∣

xlim(a) ≤ x and Fpar(a) ≤ Flim(a)

)

.

Whenever n∗(x) is strictly positive, it is feasible to ensure a positive effort
for the n∗(x) users through the TAC policies defined in Proposition 2. The
set of TAC policies is defined as

Q∗(x) =
(

ωFpar(n
∗(x))x+ (1− ω)F ∗

pa(x)
)

x

where upper viable or precautionary quota F ∗
pa(x) correspond to:

F ∗
pa(x) = min

(

α(n∗(x))px− β(n∗(x)), 1 − f−1(xlim(n
∗(x)))

x

)

.

4. Numerical Example

To illustrate the analytical results, we present a model of the nephrops
fishery in the Bay of Biscay and data depicted in Martinet et al. (2007)7.
The population dynamics is specified as a Beverton-Holt relation for the
biomass:

f(x) =
Rx

1 + Sx

7We use the model parameter values estimated by Martinet et al. (2007) to define our
numerical example, with adaptations to allow for the specific aspects of our analysis to be
represented. In particular, we modify the definition of costs in the vessel profit function
to allow for a quadratic cost function, and we assume a pattern of heterogeneity in costs
across vessels. Hence, this example should be considered as illustrative only, and the
conclusions reached should not be taken to be directly applicable to the actual fishery.
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where we set R = 1.78 and S = 253.10−7 to warrant a positive equilib-
rium carrying capacity K = 30800 tons defined as K = (R − 1)/S. The
equilibrium function σ is:

H = σ(x) = x

(

1 +
1

Sx−R

)

.

For 0 < x < K, the function σ(x)
x

is decreasing, positive and lower than
unity as required. The maximum sustainable biomass xMSY and harvest
HMSY are given by:

xMSY =
R+
√
R

S
,HMSY =

(R+
√
R)2

S
.

We obtain xMSY ≈ 17604 tons and HMSY ≈ 4409 tons. The price of the
resource is set at p = 8500 euros per ton. The initial stock of the resource
estimated at year t0 = 2003 is set at x0 = 18600 tons and the potential
number of agents (vessels) involved in the fishery is n = 235. For the cost
structure, we consider the following quadratic function inspired by (Clark,
2006)

Ci(E) = 70000 + c1,iE + 0.1E2

where effort stands for days at sea per year. We introduce heterogeneity on
vessels through the definition of unit linear costs c1,i as a uniform random
variable over the interval [377∗ (1− δ), 377∗ (1+ δ)] for the 235 vessels. The
dispersion rate is set to δ = 10%. The catchability coefficient is assumed
equal to qi = 72.10−7 for all vessels.

We first compute the maximal guaranteed viable effort E∗(x0) ≈ 128
days at sea as defined in Proposition 4. Viable trajectories from t0 are
plotted for this case in Figure 4. All the 235 vessels participate in the
catches and the quota market. The viability kernel is defined for the values
of the stock which are above the critical stock level xlim(n) ≈ 6936 < x0.
At each time step, the manager can choose any value of the parameter ω in
[0, 1] to set a viable TAC Q(x) = (ωFparx+ (1− ω)Fpa(x)) x. Note that the
stock x(t) remains at low levels close to xlim(a) ≈ 6936 compared to MSY
or MEY reference points. Similarly the quota price m(t) is trapped into low
values.

However such a guaranteed effort E∗(x0) ≈ 128 is lower than the effort
E(t0) = 163 in t0. If the regulating agency aims at ensuring such an effort
Elim = 163, Proposition 5 suggests to compute the maximal number of viable
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vessels which is strictly lower than n = 235. It turns out that n∗(x0) ≈ 214.
To illustrate our results, we reduce the system to a = 150 < n∗(x0) viable
licensed users. The quota policy is only implemented for these viable users.
Under this new scenario, the viability stock threshold xlim(a) = 6, 755 <
x0 is reduced. This generates the viable trajectories depicted in Figure 5.
Compared to the previous case, higher levels of bio-economic performance
are observed. In particular the mean stock and catches reach values close
to MSY (red) or MEY (blue) reference points.

5. Conclusion

This paper addresses the problem of the sustainable management of
a renewable resource based on the allocation of a Total Allowable Catch
(TAC) through individual and transferable quotas (ITQs), when heteroge-
neous agents choose their effort levels and quotas to maximize their net
profits. Assuming that regulation of the fishery is achieved through the se-
lection of TAC policy, we determine the feasibility conditions under which
a manager can simultaneously achieve ecological, economic and social ob-
jectives through time. We use a dynamic bio-economic model that shares
some common features with the theoretical literature. As in Heaps (2003),
we examine the determination of effort levels, the price of quotas and the
number of agents in a regulated fishery. However our model gives new re-
sults. In particular, while the fact that ITQs can ensure the joint economic
and ecological sustainability of a fishery has been known theoretically, and
documented by empirical evidence (Squires et al., 1994; Newell et al., 2005;
Costello et al, 2008), our model also suggests that social (participation) goals
may potentially be achieved under these management regimes.

Results show that the ITQ management system is viable in a triple bot-
tom line sense only under very specific conditions. This emphasizes that
ITQs are not a panacea and should be designed carefully as suggested by
Sumaila (2010). Firstly, maintaining levels of participation in an ITQ man-
aged fishery implies conditions on the structure of fishing costs and catch-
ability of the agents, together with population dynamics. In particular we
show that pursuing both social and economic efficiency objectives will be rel-
atively easier where there is a relative homogeneity of resource users, for a
given resource status. In such a case, it is possible to determine the maximin
feasible effort levels for a given set of participants. Secondly, our analysis
also emphasizes the fact that the social constraint entails a stock mainte-
nance constraint which may go beyond levels of protection that would be
warranted by strict economic efficiency objectives, leading to the existence
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of trade-offs between the two objectives. This is because if the resource
decreases below a critical level, it will not be possible to ensure that all
agents remain active. Where maintaining the initial set of agents active
is not feasible, because of too much heterogeneity between agents or of an
initial stock which is too low, we define and characterize what the maximal
number of active agents can be. In contexts where excess capacity in the
fishery exists, such information allows to quantify the decrease in fleet size
which should occur under ITQs, as mentioned for instance in Kompas &
Che (2005) and in Pinkerton & Edwards (2009). Based on this maximal
number of active agents, we identify alternative viable TAC strategies and
assess the trade-offs between the different dimensions of the triple bottom
line for fisheries management.

Overall, the results point to the necessity of better characterizing the
bio-economic status of fisheries, prior to the introduction of access regu-
lations based on the allocation of tradeable catch privileges. This status
will determine the potential conflicts between management objectives which
the approach may encounter, and in the end affect the acceptability and
practical feasibility of the approach itself.
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6. Proofs

We basically refer to methods and results detailed in StPierre (1994);
DeLara & Doyen (2008); Doyen and De Lara (2010) for discrete time models
under constraints.

6.1. Proof of proposition 1

We first define the viability kernel Viab(t, T ) at time t for a finite horizon
T through backward induction inspired by dynamic programming. First, at
the terminal date T , we set

Viab(T, T ) = {x | x ≥ xlim} . (18)

For any time t = 0, 1, .., T − 1, we compute the viability kernel Viab(t, T ) at
time t from the viability kernel Viab(t+ 1, T ) at time t+ 1 as follows:

Viab(t− 1, T ) = {x ≥ xlim,∃Q | f (x−Q) ∈ Viab(t, T )} . (19)

To compute the viability kernel Viab for an infinite horizon T = +∞ as in
the definition (17), we write

Viab =
⋂

T

Viab(0, T ). (20)

We first claim that:

Lemma 1.

Viab(t, T ) =

{

[xlim,+∞[ if Fpar ≤ Flim

[xlim(T − t),+∞[ if Fpar > Flim

where xlim(t) is defined by induction through

xlim(t+ 1) =
f−1 (xlim(t))

1− Fpar

, xlim(0) = xlim. (21)

The proof of lemma 1 is provided later on in subsection 6.2. Assuming
for a while that it holds true, we deduce the shape of the viability kernel
Viab defined in (20) for an infinite horizon T = +∞.

In the first case with Fpar ≤ Flim, we obviously conclude since

Viab =
⋂

T

Viab(0, T ) =
⋂

T

[xlim,+∞[ = [xlim,+∞[ .
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In the second case with Fpar > Flim, we conclude that

Viab =
⋂

T

Viab(0, T ) =
⋂

T

[xlim(T ),+∞[ =

[

sup
T

xlim(T ),+∞
[

= ∅

since
sup

T→+∞

xlim(T ) = lim
T→+∞

xlim(T ) = +∞.

Let us prove this last assertion. First, in that case, we note that the sequence
xlim(.) is increasing and thus xlim(t) ≥ xlim as detailed in lemma 1. Second,
we claim that for any time t we have

xlim(t+ 1)

xlim(t)
≥ 1 + ε

where ε =
Fpar−Flim

1−Fpar
> 0. Indeed, from the assumption that σ(x)

x
is a de-

creasing function, we deduce that the function f−1(x)
x

is increasing and we
obtain

xlim(t+ 1)

xlim(t)
=

f−1 (xlim(t))

xlim(t)(1 − Fpar)
≥ 1

1− Fpar

f−1 (xlim)

xlim
=

1− Flim

1− Fpar
= 1 + ε.

Finally we induce that

xlim(t) = xlim(1 + ε)t

and we conclude.

6.2. Proof of lemma 1:

We use a backward induction. First the assertion at time T is straight-
forward from the very definition of (18) and the fact that

xlim(0) = xlim.

Now let us assume that the lemma holds true at time t + 1. Consider
now any state x ∈ Viab(t, T ). From the dynamic programming structure
of the viability kernel Viab(t, T ) depicted in (19), we deduce that x ≥ xlim
along with the existence of an admissible quota Q such that

f(x−Q) ∈ Viab(t+ 1, T ).

Such catch Q is admissible if it satisfies the constraints

αpx− β ≥ Q

x
≥ Fpar and f (x−Q) ≥ xlim(T − (t+ 1))
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which yields
x− f−1 (xlim(T − t− 1)) ≥ Q ≥ Fparx.

This implies

x ≥ f−1 (xlim(T − t− 1))

1− Fpar
.

By virtue of the sequence (21), this is equivalent to

x ≥ xlim(T − t).

To sum up, we obtain x ≥ max (xlim(T − t), xlim) and

Viab(t, T ) = [max (xlim(T − t), xlim) ,+∞[.

We now distinguish the two cases:

Case Fpar ≤ Flim. Let us prove recursively that max (xlim(t), xlim) = xlim.
This clearly occurs at time t = 0. Now assume the condition holds at time t
namely that xlim(t) ≤ xlim. Then as f and f−1 are increasing functions, we
claim that

Fpar ≤ Flim =⇒ Fpar ≤ 1− f−1 (xlim)

xlim
=⇒ Fpar ≤ 1− f−1 (xlim(t))

xlim
.

In other words, we have

xlim ≥
f−1 (xlim(t))

1− Fpar
= xlim(t+ 1)

and we conclude that Viab(t, T ) = [xlim,+∞[.

Case Flim < Fpar. Symmetric inductive reasonings yield that max (xlim(t), xlim) =
xlim(t) in that case and we conclude similarly that Viab(t, T ) = [xlim(T −
t),+∞[.

6.3. Proof of proposition 4

To prove Proposition 4, we first note that the inverse V −1 of function V
exists because V is continuous and decreasing as proved in section 3.3 with
Vx < 0. Now, using Proposition 1 and the definition of Flim and Fpar, we
write

E∗(x) = max (Elim | x ≥ xlim, Flim ≥ Fpar)
= max

(

Elim | x ≥ xlim, V
−1(0) ≥ xlim

)

.
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When V (x) ≥ 0 or equivalently x ≤ V −1(0), then

E∗(x) = max (Elim | x ≥ xlim) .

Then we use the definition of xlim = maxi
c1,i+c2,iElim

pqi
to derive the condition

Elim ≤ min
i

pqix− c1,i
c2,i

.

Consequently, E∗(x) = max
(

Elim ≥ 0 | Elim ≤ mini
pqix−c1,i

c2,i

)

. In the first

case where x ≤ maxi x
oa
i , we obtain that E∗(x) = 0 while in the second

case, we have E∗(x) = mini
pqix−c1,i

c2,i
. We follow similar reasoning for the

case where V (x) < 0.
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Figure 4: Viable trajectories (mean and dispersion) in black for n = 235 agents with initial
stock x0 = 18600 (tons) and maximin threshold effort Elim = E∗(x0) = 117 (days at sea).
After a declining transition, the stock remains close to the viable threshold xlim(n) ≈ 6850
in red. MSY and MEY reference points are in yellow and blue.

28



50454035302520151050

Xmey

Xmsy

Xlim

2000

0

time t

(a) Stock x(t) (tons)

50454035302520151050

10000

MSY
MEY

2000

0

time t

(b) Quotas Q(t) (tons)

50454035302520151050

p

2000

0

time t

(c) Quota price m(t) (euros/tons)

Figure 5: Viable trajectories (mean and dispersion) in black for n = 150 < n∗(x0) = 214
agents with initial stock x0 = 18600 (tons) and maximin threshold effort Elim = 163 (days
at sea). Note that, in this case, the mean stock and the total catches increase compared
to the n = 235 scenario. In particular the mean stock and total catches reach values closer
to MSY (yellow) or MEY (blue) reference points.
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