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Ordinal 

Résumé 

Nous proposons des bases pour l’évaluation normative de distributions de deux attributs, le 
premier étant cardinalement mesurable et transférable entre les individus et le second 
ordinal et non-transférable. Le résultat que nous établissons constitue en quelque sorte 
l’analogue du théorème obtenu par Hardy, Littlewood et Pólya (1934) pour les distributions 
d’un attribut cardinal. Plus précisément, nous identifions les transformations des 
distributions qui garantissent que le bien-être social augmente pour l’unanimité utilitariste 
dès lors que la fonction d’utilité est concave dans l’attribut cardinal et que son utilité 
marginale par rapport au même attribut est décroissante par rapport à l’attribut ordinal. 
Nous établissons que ce classement à l’unanimité des distributions est équivalent au 
classement obtenu sur la base du critère des écarts de pauvreté ordonnés proposé par 
Bourguignon (1989). Enfin, nous montrons que, si une distribution domine une autre 
distribution selon le critère des écarts de pauvreté ordonnés, alors la première peut être 
obtenue à partir de la seconde au moyen d’une suite finie de telles transformations. 
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Transformations Égalisantes 

 

Ethically Robust Comparisons of Bidimensional Distributions with an Ordinal Attribute 

Abstract 

We provide foundations for robust normative evaluation of distributions of two attributes, 
one of which is cardinally measurable and transferable between individuals and the other is 
ordinal and non-transferable. The result that we establish takes the form of an analogue to 
the standard Hardy, Littlewood, and Pólya (1934) theorem for distributions of one cardinal 
attribute. More specifically, we identify the transformations of the distributions which 
guarantee that social welfare increases according to utilitarian unanimity provided that the 
utility function is concave in the cardinal attribute and that its marginal utility with respect 
to the same attribute is non-increasing in the ordinal attribute. We establish that this 
unanimity ranking of the distributions is equivalent to the Bourguignon (1989) ordered 
poverty gap quasi-ordering. Finally, we show that, if one distribution dominates another 
according to the ordered poverty gap criterion, then the former can be derived from the 
latter by means of an appropriate and finite sequence of such transformations 
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1. Introductory Remarks

The normative foundations of the comparison of distributions of a single attribute between a
given number of individuals are by now well-established. They originate in the equivalence
between three statements that are considered relevant answers to the question of when a distri-
bution x can be considered normatively better than a distribution y. Given two distributions
x and y with equal means, these statements, the equivalence of which was first established
by Hardy, Littlewood, and Pólya (1934) and popularised later on among economists by Kolm
(1969), Atkinson (1970), Dasgupta, Sen, and Starrett (1973), Sen (1973), Fields and Fei (1978)
among others, are the following:

(a) Distribution x can be obtained from distribution y by means of a finite sequence of
progressive – or equivalently Pigou-Dalton – transfers.

(b) All utilitarian ethical observers who assume that individuals convert the attribute into
well-being by means of the same non-decreasing and concave utility function rank distri-
bution x above distribution y.

(c) The Lorenz curve of distribution x lies nowhere above and somewhere below that of y,
or equivalently, for all poverty lines, the poverty gap is no greater in distribution x than
in distribution y and it is smaller for at least one poverty line.

This remarkable result, which can be generalised in a number of ways, points to three different
aspects of the inequality measurement process.1 The first statement aims at capturing the
very notion of inequality reduction by associating it with elementary transformations of the
distributions. The second statement is fundamentally normative and it assumes that society
has an aversion to inequality which, in the utilitarian framework, is reflected by the concavity
of the utility function. To some extent the first statement helps in clarifying the meaning
of the restriction imposed on the utility function in the second statement. While these two
conditions shed light on two different facets of the inequality concept, they do not prove very
useful for deciding in practice when one distribution is more unequal than another. This is
particularly true for the second statement which requires an infinite number of comparisons to
be made before a distribution can be declared less unequal than another. The third statement
resolves this problem by providing easily implementable criteria that allow one to recover the
ranking of distributions implied by the first and second statements.

The last condition can also been interpreted as a means of identifying those pairs of distri-
butions for which a consensus prevails among all inequality averse utilitarian ethical observers.
If the Lorenz curves – or equivalently the poverty gap profiles – of two distributions do not in-
tersect, then all the utilitarian ethical observers who have some aversion to inequality will rank
these distributions in the same way. If, on the contrary, the Lorenz curves of two distributions
1 As shown by Dasgupta et al. (1973), the equivalence continues to hold when more flexible social welfare
functions are substituted for the utilitarian one. It is also possible to extend this result to the case where the
distributions under comparison have differing means by adapting appropriately each of these three conditions
(see Kolm (1969) and Shorrocks (1983)).
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cross, then it is always possible to find two such ethical observers who will rank these distribu-
tions in the opposite way. This points to what may be considered an inherent limitation of this
approach: it is very unlikely that the above conditions will allow one to rank conclusively all
the distributions under consideration. Actually this pessimistic view is exaggerated and there
is empirical evidence that the comparison of the Lorenz curves permits conclusive verdicts to
be obtained in a significant number of cases.2 Nevertheless, the Lorenz criterion is often con-
sidered to be a first round approach which must be supplemented by the use of ethically more
demanding indices in a second stage. It is traditional practice to require that these summary
indices be compatible with any of the conditions of the Hardy-Littlewood-Pólya result (see,
e.g., Foster (1985)).

Important as they are, these foundations strictly concern distributions of a single attribute
which is typically identified with individual income. However the ability of income alone
to measure a person’s well-being has been seriously challenged during the last thirty years
and there has been an increasing concern for a more comprehensive approach. The focus on
income is to a large extent justified by the assumption that it provides a good measure of the
level of well-being achieved by an individual who behaves rationally in a comprehensive and
fully competitive market environment. This neglects the fact that a number of commodities
that contribute to a person’s well-being cannot be given market values. Typical instances
are amenities like recreational areas or publicly provided services like education or health
care, for which markets are imperfect or even do not exist. Also, attributes such as family
circumstances or health status affect a person’s well-being but cannot be related to income
exclusively. The recognition that a person’s well-being cannot be fully summarised by income
alone calls for a multidimensional approach to welfare and inequality measurement. While the
literature has produced, in the last thirty years or so, a significant number of contributions that
have formulated various criteria for comparing alternative distributions of multiple attributes,
none of them has established an equivalence between elementary transformations, utilitarian
unanimity over a class of utility functions and an empirically implementable criterion. We
find it useful to describe the literature on multidimensional normative evaluation as having
followed three different routes.

The first route is to impose particular conditions on the utility function that are assumed
to capture the aversion to multidimensional inequality and to explore their implications for
the ranking of the situations under comparison. The main purpose is to find implementable
dominance tests that permit one to check if it is possible to reach a consensus among these
well-defined classes of social welfare functions. Building on the results of Hadar and Russell
(1974) in the multidimensional risk literature, Atkinson and Bourguignon (1982) prove that
first and second order bidimensional stochastic dominance imply unanimity of judgements
among all utilitarians for specific classes of utility functions. In particular, first order stochastic
2 Sophisticated statistical inference techniques have been designed in order to test for the robustness of the
ranking of distributions based on the Lorenz – and more generally on the stochastic dominance – quasi-
orderings (see Beach and Davidson (1983), Bishop, Chakraborti, and Thistle (1989), Anderson (1996),
Bishop and Formby (1999), Davidson and Duclos (2000), among others).
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dominance is shown to be sufficient for utilitarian unanimity provided that the utility functions
are non-decreasing in both attributes and submodular. They also suggest that an equivalence
between their multidimensional stochastic dominance criteria and utilitarian unanimity might
hold. Atkinson and Bourguignon (1987) provide an appealing interpretation of their stochastic
dominance criteria in the particular case where one attribute is household income and the other
one an ordinal index of needs such as the household size. Their criteria and equivalence results,
developed originally for distributions of attributes with an identical marginal distribution of
needs, have been subsequently extended by Jenkins and Lambert (1993) and Bazen and Moyes
(2003) to more general situations.

Decancq (2011) proposes an extension of the first order stochastic dominance test of Atkin-
son and Bourguignon (1982) to the case where there are more than two attributes and where
all attributes are only ordinally measurable. Generalising results obtained by Epstein and
Tanny (1980) and Tchen (1980) for bivariate distributions to arbitrary multivariate ones, he
establishes an equivalence between his criterion and expected utility unanimity over the class
of submodular utility functions. He also shows that his criterion is equivalent to the possi-
bility of going from the dominated distribution to the dominating one by a finite sequence of
multivariate rearrangements. However, Decancq’s results are derived in the context of decision
making under uncertainty rather than in that of social choice. The properties of the utility
function that guarantee that utilitarian unanimity is consistent with second order stochastic
dominance are quite restrictive and in addition their meaning is not that clear. Bourguignon
(1989) proposes an interesting empirically implementable criterion that lies in between the
first and second order dominance criteria of Atkinson and Bourguignon (1982). He further
proves that the ranking of distributions agreed to by all utilitarians coincides with that implied
by his criterion provided that the utility functions are non-decreasing and concave in income
and that the marginal utility of income is non-decreasing with needs.3 However, he does not
provide any indication about what the elementary transformations of the distribution that
correspond to his dominance criterion are.

The second route, initiated by Kolm (1977), is built precisely with the aim of introducing
elementary transformations of the distributions in a multidimensional context, and in iden-
tifying the properties of the individual utility function over which a utilitarian unanimity
coincides with such transformations. Hence, Kolm (1977) considers the multiplication of the
distribution by a bistochastic matrix as the appropriate generalisation of the Pigou-Dalton
transfer to the multidimensional framework. He proves that, if a situation is obtained from
another one by means of such a transformation, then the former situation is ranked above the
latter by all the utilitarian ethical observers who evaluate the individuals’ well-being by means
of a concave utility function, and conversely. Kolm’s approach avoids the difficulty inherent
in Atkinson and Bourguignon (1982) by making clear what is meant by inequality reduction
and then by identifying the normative judgements consistent with it. On the other hand, the
elementary transformation he considers is somewhat specific: it consists in transferring an
3 Fleurbaey, Hagneré, and Trannoy (2003) show that it is possible to refine the Bourguignon (1989) criterion
by introducing equivalence scales and by allowing these to vary within predefined intervals.
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identical fraction of each attribute from one individual to another. More importantly, he does
not identify a criterion that would implement the utilitarian unanimity criterion for the class
of concave utility functions.

If one allows the fractions transferred to vary across attributes and at the same time requires
that the beneficiary of the transfers is poorer then the donor in all dimensions, then one is
lead to the type of transformation considered by Müller and Scarsini (2011). These authors
show that these intuitively equalising transformations can – under suitable conditions – be
decomposed into two more basic transformations, where the first one decreases correlation
without altering the marginal distributions of the attributes, while the second one reduces
dispersion in one attribute without affecting the correlation between the attributes. As it turns
out, the transformations proposed by Müller and Scarsini are generalisations – to the case of
an arbitrary number of cardinally measurable attributes – of the elementary transformations
considered in this paper and further discussed below. Müller and Scarsini (2011) (see also
Meyer and Strulovici (2010)) show that, if one distribution is obtained from another by means
of a finite sequence of their equalising transformations, then the former is preferred to the
latter by all utilitarians whose utility functions are concave in all dimensions and submodular,
and conversely.4 However, while the equalising process considered by Müller and Scarsini
(2011) is more attractive than the transformations of Kolm (1977), it must be admitted that
an analogue to the stochastic dominance tests of Atkinson and Bourguignon (1982) is still
missing.

The third route is followed by Koshevoy (1995), who suggests the use of the Lorenz zono-
tope as a generalisation of the Lorenz curve in the multidimensional framework. Among other
things, he proves that a sufficient condition for one distribution to dominate a second according
to his criterion – the Lorenz zonotope of the former distribution is included in the Lorenz zono-
tope of the latter – is that the former can be obtained from the latter through multiplication
by a bistochastic matrix. However, this does not tell us a lot about the implicit equalisation
process embedded in the Lorenz zonotope criterion since the converse statement does not
hold. Furthermore, Koshevoy (1995) does not provide any indication about what properties
of the utility function would guarantee that the ranking of distributions generated by unanim-
ity among all utilitarian ethical observers coincide with that implied by the Lorenz zonotope
criterion. Nor does he give evidence that the welfarist approach to inequality measurement is
compatible with the Lorenz zonotope quasi-ordering.5 While the welfare criterion considered
by Kolm implies Koshevoy’s quasi-ordering, the converse implication does not hold, and it is
therefore difficult to justify the use of the Lorenz zonotope from a normative standpoint.
4 We refer the reader to Marinacci and Montrucchio (2005) where the relationships between the notions of
component-wise concave and submodular functions and those of inframodular functions are discussed.

5 Rigorously speaking, the fact that the Lorenz zonotope cannot be given a utilitarian – and possibly a welfarist
– justification does not mean that there exists no social welfare functions consistent with it. To the best of
our knowledge, there does not seem to exist a proof of this claim and it is still an open question whether
the Lorenz zonotope can be rationalised by means of a social welfare function.
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This brief examination of the literature indicates that the best that has been achieved to
date are equivalences between a criterion based on unanimity among those utilitarian ethical
observers who subscribe to some common values and either (i) an implementable criterion
(Atkinson and Bourguignon (1982, 1987), Decancq (2011), Bourguignon (1989)) or (ii) specific
equalising transformations (Kolm (1977), Müller and Scarsini (2011), Meyer and Strulovici
(2010, 2011)). While the literature has proposed different generalisations of the notion of a
progressive transfer, it must be admitted that no decisive step has been made by proving
that if one distribution is ranked above another distribution by some easily implementable
criterion, then it is possible to obtain the dominating distribution from the dominated one by
successive applications of such transformations. As a consequence, and with the exception of
Decancq (2011), Epstein and Tanny (1980) and Tchen (1980) in the specific context of decision
making under uncertainty, none of these studies has succeeded in providing an equivalence
between the analogues of statements (a), (b) and (c) in a multidimensional setting up to now.
Hence, it appears, that, despite the relative wealth of attempts made in this direction during
the last thirty years, there are no multidimensional analogues to the Hardy-Littlewood-Pólya
equivalence result.

In this paper, we aim at providing a step towards establishing such an equivalence for
the case where there are only two attributes to be distributed, one of which has a cardinal
nature while the other is only ordinally measurable, as in Atkinson and Bourguignon (1987)
and Bourguignon (1989). As far as the normative evaluation is concerned, we follow the
standard practice which consists in endowing each ethical observer with a utilitarian social
welfare function and in requiring unanimity of judgements among all observers. Certainly, the
utilitarian rule is a particular method for making distributive judgements that shows strictly-
speaking no direct consideration for distributive justice. What matters for a utilitarian ethical
observer is the sum of the individuals’ utilities and not the way these utilities are distributed
among the population. However, the utilitarian rule is a particularly convenient device and,
contrary to what intuition suggests, it is more flexible than it might look at first sight.

Focusing on bidimensional distributions may look restrictive, but it provides a simple
enough structure in which the basic problem we are interested in can be addressed. Our
somewhat asymmetric treatment of the two attributes may seem more disputable, but there
are a number of instances where the available information about several attributes of interest
is only ordinal in nature. For instance, one may be interested in the evaluation of income dis-
tributions for households who differ in size and composition, as in Atkinson and Bourguignon
(1987) or Bourguignon (1989). Even though precise information concerning household compo-
sition such as the number and ages of the family’s members is available, one may be reluctant
to assign a cardinal meaning to these figures. A similar situation arises when one has to
compare the well-being of different populations on the basis of the distributions of the income
and health status of their members. Indicators like infant mortality or life expectancy are
routinely used for measuring a person’s health status and, here again, one might be willing to
assume that the only reliable information is of an ordinal nature (see for instance Allison and
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Foster (2004)).6 The consumption of local public goods such as the quality of schooling (see
Gravel, Moyes, and Tarroux (2009)) is another example of an attribute to which one might
hesitate to assign a cardinal meaning. On the other hand, there is wide agreement among
economists about the fact that individual income per year – at least when used in a specific
price configuration – is a cardinally meaningful attribute. It is therefore not unreasonable to
consider two attributes that cannot be defined with the same degree of precision.

As for elementary transformations of the distributions, it seems quite natural to assume
that, other things equal, a progressive transfer in the cardinal attribute between two indi-
viduals who have the same endowment of the ordinal attribute reduces inequality. For the
sake of consistency with the unidimensional approach, a within-type progressive transfer – as
we will call it henceforth – is the first equalising transformation we consider. The second
transformation – which we refer to as a favourable permutation – is implicitly contained in
Atkinson and Bourguignon (1982) and explicitly used by Müller and Scarsini (2011), Meyer
and Strulovici (2010, 2011) and Decancq (2011). It consists in giving the cardinal attribute
endowment of the better-off individual in both attributes to the worse-off individual in both
attributes and vice versa. This permutation of the endowments in the cardinal attribute actu-
ally amounts to reducing the pairwise correlation – or positive association – existing between
the two attributes. The favourable permutation is probably the most controversial elementary
transformation we consider because it is not clear how inequality in the distribution of the
two attributes is reduced as a result. Actually, it is the inequalities of well-being between
the two individuals involved in the favourable permutation that are reduced. More precisely,
it can be established that, for any increasing utility function, the well-being of the poorer
individual increases while that of the richer individual decreases, thereby bringing them closer
together on the utility scale. This consequence of a favourable permutation is reminiscent of
the Hammond (1976) equity condition in an ordinal context and it is in this respect that it
may be considered to be an equalising transformation. The between-type progressive transfer ,
which is a natural extension of a progressive transfer in our particular framework, is our third
transformation. It consists in transferring an amount of the cardinal attribute from a better-
off individual in both attributes to a worse-off individual in both attributes in such a way that
the beneficiary of the transfer is not made richer than the donor in the cardinal attribute.
Contrary to the bistochastic transformation of Kolm (1977), where the same equalising pro-
cess is applied to both attributes, a between-type progressive transfer entails redistribution in
only one dimension. Clearly, a between-type progressive transfer is a particular case of the
equalising transformations considered by Müller and Scarsini (2011).

These three transformations are elementary in the sense that it seems difficult to conceive
of simpler inequality-reducing operations into which they could be decomposed. In fact, this
is not perfectly true as far as between-type progressive transfers are concerned and one may
argue they are not as elementary as they might look at first glance. As will be seen below
– and as was shown by Müller and Scarsini (2011) – it is possible to decompose a between-

6 An important issue, particularly stressed by Allison and Foster (2004), concerns the implication for the
ranking of the situations under comparisons of a change in the measurement scale of an attribute.
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type progressive transfer into a within-type progressive transfer coupled with a favourable
permutation. But, for such a decomposition to be made, an important qualification is needed:
one has to add a phantom individual with appropriate endowments in both attributes. As
will become clear later, this phantom individual is only instrumental and she has no impact
on the ranking of the distributions.7

Turning finally to the question of the implementation of the unanimity of value judgements
criterion, we focus on two dominance criteria that have been considered separately in the
literature. The first criterion, proposed by Atkinson and Bourguignon (1982), is the one that
has received more attention in the literature. It declares that one situation dominates another
situation if the graph of the joint distribution function of the former situation lies nowhere
above that of the latter. This condition is actually the bidimensional version of the poverty
measurement approach based on the headcount ratio: poverty, as measured by the percentage
of individuals who fall below predetermined levels of the two attributes, is less in the first
situation than in the second, for all possible values of the attributes’ poverty lines. The
Bourguignon (1989) ordered poverty gap quasi-ordering is the second implementable criterion
that we examine in this paper. The poverty gap is computed for the cardinal attribute by
assigning to each individual a poverty line that depends negatively on her endowment of the
ordinal attribute. Other things equal, it is more difficult for someone in good health or living
in an area with good public facilities to be considered deprived in income than for someone
handicapped or living in the slums.

The organisation of the paper is as follows. We introduce in Section 2 our bidimensional
model along with our notation and preliminary definitions. In Section 3 we present the norma-
tive criterion, which will be used by the ethical observer in order to rank the distributions under
comparison. Section 4 is concerned with the first criterion due to Atkinson and Bourguignon
(1982) and it provides the analogue to the Hardy-Littlewood-Pólya result in this case. More
precisely, we show that the domination of one situation over another is equivalent to requiring
unanimity of value judgements among all utilitarian ethical observers whose marginal utility
of the cardinal attribute is non-negative and decreasing in the level of the ordinal attribute.
This implies in turn that the dominating distribution can be obtained from the dominated
one by means of a finite sequence of favourable permutations of the cardinal attribute.

Our main result is the subject of Section 5, which examines the normative foundations of
the Bourguignon (1989) ordered poverty gap dominance criterion. Introducing the additional
requirement that the utility function is concave in the cardinal attribute for fixed levels of
the ordinal attribute is enough to guarantee that the rankings of situations implied by the
ordered poverty gap criterion and unanimity among all utilitarian ethical observers is identical.
Exploiting the possibility of adding phantom individuals to the original population allows us
to show that it is possible to derive the dominating situation from the dominated one by
means of a finite sequence of within-type progressive transfers followed by a finite sequence of
favourable permutations, and conversely. Our results have been derived under the assumptions
7 Things would be different if, for instance, we were interested in the absolute and average welfare in the
society, for in this case the introduction of this phantom individual would no longer be neutral.
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that the distributions under comparison have the same mean income and that the marginal
distribution of the ordinal attribute is fixed.

The utilitarian principle, upon which we drew when establishing our results, has been
criticised on the ground that it is insensitive to the way utility is distributed among the
society’s members. We indicate in Section 6 how our results can be generalised when the
distributions under comparison differ with respect to both mean income and the distribution
of the ordinal variable, and when the ethical observers appeal to normative principles that
might appear more acceptable than the utilitarian rule. Section 7 summarises the main results
and hints at possible avenues for future research. In order to keep technicalities to a minimum
in the course of the exposition, the proofs of the lemmas and propositions are relegated to
Section 8.

2. Notation and Preliminary Definitions

We consider a finite population or society consisting of n individuals (n = 2), where each
individual is endowed with two attributes, the first of which is assumed to be cardinal while
the second is ordinal. In the case of a cardinal attribute, it makes sense to compare levels as well
as differences of individual endowments, while only the first type of comparison is admissible
when the attribute is ordinal. In other words, an affine transformation of the values taken
by the attribute has no impact on the information provided by a cardinal variable, whereas
arbitrary increasing transformations leave the information unchanged when the variable is
ordinal. These assumptions can be viewed as either describing the intrinsic nature of the
attribute or reflecting our perception of the attribute, in which case there may not be full
agreement regarding the type of measurability attached to the attribute. It is important for our
purpose to note that the type of measurability that one assumes has important consequence for
the analysis as it restricts the range of operations that can be considered and as a consequence
the list of properties of the functions which have the attribute as an argument. For instance,
while it makes sense to transfer amounts of the cardinal attribute between individuals, we
assume throughout that such operations are meaningless in the case of the ordinal attribute.
To simplify the exposition, we identify the cardinal attribute with income and the ordinal
attribute with health. Given the discussion above, the latter must not be taken too literally
and it should rather be interpreted as a means of ordering individuals and defining their types
in terms of health status.8

A bidimensional distribution, or more compactly a situation, for a population of n individ-
8 Other examples of the ordinal attribute include the consumption of local public goods (Gravel et al. (2009))
or family size in the case of households (Atkinson and Bourguignon (1987), Bourguignon (1989), among
others). In the latter case, family size is interpreted as an indicator of household needs and the ordinal
attribute is a decreasing function of neediness.

8
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uals is a n× 2 matrix

(2.1) s ≡ (x; a) :=



x1 a1
... ...
xi ai
... ...
xn an


=



s1
...
si
...
sn


,

such that si = (xi, ai) fully describes individual i, where xi ∈ D := [ v, v ] ⊂ R and ai ∈
A := {1, 2, . . . , H} are respectively the income and the health status of individual i. As
can be noticed, the asymmetry in the treatment of the two attributes is reemphasised by
our assumption that the cardinally measurable attribute takes continuously many different
values while the ordinally measurable one only takes a finite number of values. Yet there is
nothing fundamental in that distinction and we could equally well have presented our results
by assuming either a finite number of possible values for both attributes or continuously many
values for both. The (marginal) distributions of income and health in situation s ≡ (x; a) are
indicated respectively by x := (x1, . . . , xn) ∈ Dn and a := (a1, . . . , an) ∈ A n.9 The general
set of situations for a population of n individuals is denoted as

(2.2) Sn := {s ≡ (x; a) | (xi, ai) ∈ D ×A , ∀ i = 1, 2, . . . , n} ,

and we let µ(x) represent the mean income in situation s ≡ (x; a).

We will make extensive use in what follows of the representation of the bidimensional dis-
tributions by means of their associated joint, marginal and conditional cumulative distribution
functions. Given the situation s ≡ (x; a) ∈ Sn, we denote byN(y, h) = {i |xi = y and ai = h}
the set of individuals who receive an income equal to y and who have a health status equal to
h. The joint density function of s ≡ (x; a) is given by

(2.3) f(y, h) = n(y, h)/n, ∀ y ∈ D , ∀ h ∈ A ,

where n(y, h) = #N(y, h). Similarly, we indicate by Q(y, h) = {i |xi 5 y and ai 5 h} the set
of individuals who receive an income no greater than y and whose health status is no greater
than h. Letting q(y, h) = #Q(y, h), the joint cumulative distribution function is defined by

(2.4) F (y, h) = q(y, h)/n, ∀ y ∈ D , ∀ h ∈ A .

The set of individuals whose income in situation s ≡ (x; a) is equal to y is denoted as N1(y) =
{i |xi = y}, while N2(h) = {i | ai = h} indicates the set of individuals whose health status is
equal to h. The marginal density functions of income and health are respectively defined by

(2.5) f1(y) = n1(y)/n and f2(h) = n2(h)/n, ∀ y ∈ D , ∀ h ∈ A ,

9 To be rigourous we should write x := (x1, . . . , xn)T and a := (a1, . . . , an)T , where the superscript “T”
denotes the transposed vector. Since there is little risk of confusion, we will omit throughout the transposition
operator to lighten the notation.

9
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where n1(y) = #N1(y) and n2(h) = #N2(h). The set of individuals whose income in situation
s ≡ (x; a) is no greater than y is indicated by Q1(y) = {i |xi 5 y}, while the set of individuals
whose health status is no greater than h is denoted as Q2(h) = {i | ai 5 h}. The marginal
distribution functions of income and health are respectively defined by

(2.6) F1(y) = q1(y)/n and F2(h) = q2(h)/n, ∀ y ∈ D , ∀ h ∈ A ,

where q1(y) = #Q1(y) and q2(h) = #Q2(h). The conditional density functions of income and
health are indicated by

(2.7) f1(y |h) = n(y, h)/n2(h) and f2(h | y) = n(y, h)/n1(y), ∀ y ∈ D , ∀ h ∈ A ,

respectively. Let Q1(y |h) = {i |xi 5 y and ai = h} represent the set of individuals whose
health status is equal to h and income no greater than y. Similarly, the set of individu-
als with income equal to y and health status no greater than h is denoted by Q2(h | y) =
{i | ai 5 h and xi = y}. The conditional distribution functions of income and health are de-
fined by

(2.8) F1(y |h) = q1(y |h)/n2(h) and F2(h | y) = q2(h | y)/n1(y), ∀ y ∈ D , ∀ h ∈ A ,

respectively, where q1(y |h) = #Q1(y |h) and q2(h | y) = #Q2(h | y).

Throughout this paper, we are interested in the comparison of situations s◦ ≡ (x◦; a◦), s∗ ≡
(x∗; a∗) ∈ Sn. The associated joint, marginal and conditional density functions and distri-
bution functions of s∗ and s◦ will be identified by means of the corresponding superscripts.
Because the most difficult part of our results concerns the way the attributes are distributed
among the individuals, we restrict our attention in the first part of the paper to the com-
parisons of situations whose marginal distribution functions of health are identical and mean
incomes equal.

Before we examine the normative criteria that we will rely on for passing welfare judgements,
we would like to insist on the implications of our informational constraints for these assessments
which we alluded to above. Let the situations s◦ ≡ (x◦; a◦), s∗ ≡ (x∗; a∗), s̃◦ ≡ (x̃◦; ã◦) and
s̃∗ ≡ (x̃∗; ã∗) be such that

(2.9) x̃∗i = α + βx∗i , x̃
◦
i = α + βx◦i , ã

∗
i = ψ (a∗i ) and ã◦i = ψ (a◦i ) , ∀ i = 1, 2, . . . , n,

where α ∈ R, β > 0 and ψ is increasing. Assuming that income is cardinally measurable and
health ordinally measurable amounts to considering that the pairs {s∗, s◦} and {s̃∗, s̃◦} convey
the same information. Then, all the normative criteria ≥J we will consider must have the
property that

(2.10) ∀ s∗, s◦ ∈ Sn : (x∗; a∗) ≥J (x◦; a◦)⇐⇒ (α1 + βx∗;ψ(a∗)) ≥J (α1 + βx◦;ψ(a◦)) ,

whenever α ∈ R, β > 0 and ψ is increasing, and where 1 := (1, . . . , 1) ∈ Rn. In other
words the normative criteria ≥J are invariant with respect to particular modifications of
the measurement scales of the attributes. This informational constraint is not innocuous:
for instance, the standard relative Lorenz quasi-ordering, which is widely used for making
inequality comparisons in the single attribute case, is not invariant with respect to affine
transformations of the variable (see, e.g., Moyes (1994, Proposition 3.1)).

10
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3. The Normative Criteria

Following the usual practice in the dominance approach, we assume that (i) all individuals
transform their endowments of the two attributes into well-being by means of the same utility
function and (ii) the distribution of the individual utilities in a situation provides all the rele-
vant information for appraising this situation from a normative point of view. It is convenient
to think of an ethical observer who is in charge of evaluating the different situations being
compared on the basis of the distributions of utilities they generate. This way of proceed-
ing is compatible with the welfarist approach according to which the utility function is the
one actually used by the individuals in order to convert their endowments of the attributes
into well-being.10 Here, well-being is assumed to be a cardinally measurable and interper-
sonally comparable variable that summarises all the aspects of an individual’s situation that
are deemed relevant for normative evaluation. But the utility function can also be viewed as
reflecting the assessment of the individual’s situation by the ethical observer as it is typically
assumed in the non-welfarist approach. Then, there is no presumption that utility is con-
nected to the individual’s actual well-being and one must rather interpret the utility function
as a predefined social norm. It is immaterial for our purpose which of these two approaches
one has in mind and our results apply equally to both cases.

The utility achieved by individual i in situation s ≡ (x; a) as envisaged by the ethical
observer is indicated by U (si) = U (xi, ai). To simplify the exposition, we assume throughout
that the utility function U : D×A → R is twice differentiable in income and we denote by U

the set of such functions.11 We use U(s) ≡ U(x; a) := (U(x1, a1), . . . , U(xn, an)) to indicate
the distribution of utility generated by the situation s ≡ (x; a) ∈ Sn when the utility function
is U ∈ U . The utilitarian rule ranks the situations being compared on the basis of the sum
of the utilities they generate. More precisely, from the point of view of a utilitarian ethical
observer endowed with the utility function U ∈ U , situation s∗ is considered to be no worse
than situation s◦ if and only if

(3.1)
n∑
i=1

U (x∗i , a∗i ) =
n∑
i=1

U (x◦i , a◦i ) .

The utility function U captures the utilitarian ethical observer’s normative judgement and it
is the only parameter by which such ethical observers can be distinguished. In order to rule
out as much arbitrariness as possible, we require all utilitarian ethical observers whose utility
functions U belong to a given class U ∗ ⊂ U to agree on the ranking of the situations under
comparison.

Utilitarian Unanimity Rule. We say that situation s∗ is no worse than situation s◦ for
10 We refer the reader to Blackorby, Bossert, and Donaldson (2005) and Griffin (1986) for discussions of the
welfarist approach in economics and philosophy, respectively.

11 The differentiability assumption is not restrictive since it is always possible in our framework to approximate
the discontinuous functions we might face in the proofs by suitable continuous and differentiable functions
(see Fishburn and Vickson (1978)).
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the (classical) utilitarian unanimity rule over the class U ∗ ⊂ U if and only if

(3.2)
n∑
i=1

U (x∗i , a∗i ) =
n∑
i=1

U (x◦i , a◦i ) , ∀ U ∈ U ∗.

In the course of the paper, we shall have to introduce particular permutations of income
between individuals whose impact on the society’s welfare will go in a definite direction.
Whereas the question of knowing whether partial permutations lead to a welfare improvement
is open to debate, it is generally admitted that a complete permutation of the situations of
two individuals will leave social welfare and inequality unchanged.

Permutation of the Individuals’ Situations. Given two situations s◦, s∗ ∈ Sn, we say
that s∗ is obtained from s◦ by means of a permutation of the individuals’ situations if there
exists an n× n permutation matrix P such that s∗ = P s◦.

It follows from our definitions that the utilitarian social welfare function – and as a consequence
the utilitarian unanimity principle – is invariant to a permutation of the individuals’ situations.

4. Bidimensional Headcount Poverty Dominance

While the primary interest of Atkinson and Bourguignon (1982) was not to investigate the
transformations that reduce inequality in a bidimensional setting, the main condition they
imposed on the utility function suggests they had implicitly in mind the following elementary
transformation.

Favourable Income Permutation. Given two situations s◦, s∗ ∈ Sn, we say that s∗ is
obtained from s◦ by means of a favourable income permutation if there exist two individuals
i and j (i 6= j) such that:

x∗j = x◦i < x◦j = x∗i ; a∗i = a◦i < a◦j = a∗j ; and(4.1a)

s∗g = s◦g, ∀ g 6= i, j.(4.1b)

A favourable income permutation consists in exchanging the income endowment of the
better-off individual in both attributes with that of the worse-off individual in both at-
tributes.12 We have represented in Figure 4.1 a favourable income permutation involving
two individuals i and j whose initial situations are respectively s◦i = (x◦i , a◦i ) = (u, h) and
s◦j = (x◦j , a◦j) = (v, k) with u < v and h < k. The permutation of the income endowments
actually reduces the correlation – or equivalently the positive association – existing between
the two attributes. The resulting situation may be considered less unequal than the original
situation in the sense that

U(x◦i , a◦i ) < U(x∗i , a∗i ) 5 U(x∗j , a∗j) < U(x◦j , a◦j), or(4.2a)

U(x◦i , a◦i ) < U(x∗j , a∗j) < U(x∗i , a∗i ) < U(x◦j , a◦j),(4.2b)

12 Conditions (4.1a) and (4.1b) can equally be interpreted as defining a favourable health status permutation.
There is indeed perfect symmetry, but we find it convenient to think of such transformations as income
rather than health status changes.

12
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Figure 4.1: A favourable income permutation
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for all utility functions U increasing in both income and health. On the other hand, a
favourable income permutation has no impact on the distribution of each attribute in the
population: the marginal distribution functions of income and health are left unchanged and
so is mean income. The next result identifies the conditions to be imposed on the utility
function for social welfare as measured by the utilitarian rule to improve as the result of a
favourable income permutation.

Lemma 4.1. For all s∗, s◦ ∈ Sn:
∑n
i=1 U (x∗i , a∗i ) =

∑n
i=1 U (x◦i , a◦i ) whenever s∗ is obtained

from s◦ by means of a favourable permutation if and only if

C1 Uy(y, h) = Uy(y, k), ∀ y ∈ D , ∀ h, k ∈ A (h < k),

where Uy(y, h) indicates the first derivative of U(y, h) with respect to income.

According to Lemma 4.1, a non-increasing marginal utility of income as health status in-
creases is necessary and sufficient for a utilitarian ethical observer to consider that a favourable
income permutation results in a weak welfare improvement. In order to save space and with
a slight abuse of terminology we say that the utility functions that verify condition C1 are
submodular.13 We denote by

(4.3) U1 := {U ∈ U | U satisfies C1}

the class of utility functions with non-increasing marginal utility of income.
13 Actually, a function g : R2 → R is called submodular if g(u + ε, v + δ) − g(u, v + δ) 5 g(u + ε, v) − g(u, v),
for all (u, v) ∈ R2 and all ε, δ > 0. When the function g is differentiable, this reduces to the condition that
the cross-derivative g12(u, v) is non-positive. Sometimes, one also says that g is L-subadditive (see, e.g.,
Marshall and Olkin (1979, Chapter 6, Section D).
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Atkinson and Bourguignon (1982) have shown that the ranking of situations by the utili-
tarian unanimity rule over the class U1 is implied by the ranking obtained by comparing the
graphs of their joint cumulative distribution functions by means of the first order stochastic
dominance criterion. More precisely, we say that situation s∗ first order stochastic dominates
situation s◦, which we write as s∗ ≥FSD s◦, if and only if:

(4.4) F ∗(y, h) 5 F ◦(y, h), ∀ y ∈ D , ∀ h ∈ A .

Using (2.4), (2.5) and (2.8) and upon substitution, condition (4.4) can be equivalently rewritten
as

(4.5)
h∑
g=1

f ∗2 (g)H∗(z | g) 5
h∑
g=1

f ◦2 (g)H◦(z | g), ∀ z ∈ D , ∀ h ∈ A ,

where

(4.6) H(z | g) := q1(z | g)
n2(g)

is the headcount poverty of the subpopulation of individuals having health status g in situation
s for the income poverty line z. Condition (4.4) – or equivalently, condition (4.5) – expresses
the fact that there is less poverty in situation s∗ than in situation s◦ for all possible values of the
bidimensional poverty line (z, h), where poverty is measured by the percentage of individuals
whose income and health status fall below z and h, respectively. More precisely, we say that
situation s∗ (weakly) headcount poverty dominates situation s◦, which we write as s∗ ≥HP s◦,
when condition (4.5) holds.

In conjunction with the result of Atkinson and Bourguignon (1982), Lemma 4.1 suggests
that favourable income permutations might be the elementary transformations that lie behind
first order stochastic – equivalently headcount poverty – dominance. The following result
shows that this intuition is correct with certain qualifications.

Proposition 4.1. Let s∗, s◦ ∈ Sn be such that a∗ = a◦ and s∗ is not a permutation of s◦.
Then, statements (a) and (b) below are equivalent:

(a) s∗ is obtained from s◦ by means of a finite sequence of favourable income permutations.

(b-1) F ∗(y, h) 5 F ◦(y, h), for all y ∈ D and all h = 1, 2, . . . , H − 1;

(b-2) F ∗1 (y) ≡ F ∗(y,H) = F ◦(y,H) ≡ F ◦1 (y), for all y ∈ D ;

(b-3) F ∗2 (h) ≡ F ∗(v, h) = F ◦(v, h) ≡ F ◦2 (h), for all h ∈ A .

Whereas condition (b-3) in Proposition 4.1 is but a restatement of the assumption that the
situations under comparison have identical distributions of health statuses, the two other
conditions are of a more fundamental nature. In particular, condition (b-2) implies that the
distributions of income x∗ and x◦ are permutations of each other.

Making use of Lemma 4.1 and Proposition 4.1, we obtain the following result, which con-
stitutes in our framework the analogue to the Hardy-Littlewood-Pólya result for first order
stochastic – equivalently headcount poverty – dominance.

14
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Theorem 4.1. Let s∗, s◦ ∈ Sn be such that a∗ = a◦ and µ (x∗) = µ (x◦). Then statements
(a), (b) and (c) below are equivalent:

(a) s∗ is obtained from s◦ by means of a finite sequence of permutations of the individuals’
situations and/or favourable income permutations.

(b) ∑n
i=1 U (x∗i , a∗i ) =

∑n
i=1 U (x◦i , a◦i ), for all U ∈ U1.

(c-1) F ∗(y, h) 5 F ◦(y, h), for all y ∈ D and all h = 1, 2, . . . , H − 1;

(c-2) F ∗1 (y) ≡ F ∗(y,H) = F ◦(y,H) ≡ F ◦1 (y), for all y ∈ D ;

(c-3) F ∗2 (h) ≡ F ∗(v, h) = F ◦(v, h) ≡ F ◦2 (h), for all h ∈ A .

Proof.

(a) =⇒ (b). The fact that statement (a) implies statement (b) follows from repeated appli-
cations of Lemma 4.1 (sufficiency part) and the fact that the utilitarian rule is invariant with
respect to permutations of the individuals’ situations.

(b) =⇒ (c). Condition (c-3) is a consequence of the assumption that the marginal distributions
of health status in situations s∗ and s◦ are identical. We first prove that condition (b) implies
that

(4.7) F ∗(y, h) 5 F ◦(y, h), ∀ y ∈ D , ∀ h ∈ A .

Suppose that (4.7) is not verified and let (v∗, h∗) be the smallest – in the lexicographic sense
– couple (v, h), where v ∈ D and h ∈ A , such that F ∗(v, h) > F ◦(v, h). Consider then the
function

(4.8) ϕ(y) :=


0 if v 5 y < v∗,

ϑ if v∗ 5 y 5 v,

and let ϕ∗ be a twice differentiable approximation of ϕ with positive first derivatives (see
Fishburn and Vickson (1978, p. 75) for details). Now choose the utility function U such that
U(y, h) := ϕ∗(y), for all y ∈ D and all h = 1, 2, . . . , h∗ − 1, and U(y, h) := ϑ, for all y ∈ D

and all h = h∗, h∗ + 1, . . . , H. By construction U ∈ U1, but one can easily check that

(4.9)
n∑
i=1

U (x∗i , a∗i ) <
n∑
i=1

U (x◦i , a◦i ) .

Hence condition (b) is not verified. Thus, condition (4.7) holds, and so does condition (c-1).
It remains to show that condition (c-2) is also fulfilled. Suppose it is not, which in conjunction
with (4.7) implies that

(4.10) F ∗(y,H) 5 F ◦(y, h), ∀ y ∈ D , and F ∗(ỹ, H) < F ◦(ỹ, h), for some ỹ ∈ D .

Upon integrating, this implies in turn that

(4.11) µ (x∗) = v −
∫ v

v
F ∗(y,H) dy > v −

∫ v

v
F ◦(y,H) dy = µ (x◦) ,
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which contradicts our assumption that µ (x∗) = µ (x◦).

(c) =⇒ (a). This follows from Proposition 4.1.

Theorem 4.1, in conjunction with the fact that headcount poverty dominance is a necessary
condition for a situation to be ranked above another one by all utilitarian ethical observers
whose marginal utility of income is non-increasing with health, supplements Atkinson and
Bourguignon (1987, Proposition 2). It is fair to note that Epstein and Tanny (1980) and
Tchen (1980) have proven a similar result in the context of decision making under uncertainty
but using a different argument. Related results have been provided by Müller and Scarsini
(2011) and Meyer and Strulovici (2010, 2011) when there are more than just two attributes.
However, none of these articles provide an easy-to-check condition that plays a role similar to
our statement (c). While there is a high (theoretical) presumption that the criterion defined
by statement (c) does not allow us to discriminate a great deal among the situations under
comparison, it is important to note that it is very robust to changes in the measurement units.
First order stochastic – or equivalently, headcount poverty – dominance builds only on ordinal
information and the results of the comparisons are not affected by changes in the measurement
scales of the two attributes provided that they are increasing.

5. Bidimensional Ordered Poverty Gap Dominance

In a unidimensional framework, it is generally agreed that a transfer from a more endowed
individual to a less endowed one reduces overall inequality provided that their relative positions
are preserved. Invoking the consistency of the multidimensional approach to inequality with
the unidimensional one, it is natural to require that such a transfer will – other things equal
– reduce inequality in our bidimensional setting.14

Within-Type Progressive Income Transfer. Given two situations s◦, s∗ ∈ Sn, we say
that s∗ is obtained from s◦ by means of a within-type progressive income transfer if there exist
two individuals i and j (i 6= j) such that:

x◦i < x∗i 5 x∗j < x◦j ; a◦i = a∗i = a∗j = a◦j ;(5.1a)

x∗i − x◦i = x◦j − x∗j ; and(5.1b)

s∗g = s◦g, ∀ g 6= i, j.(5.1c)

We have represented in Figure 5.1 a within-type progressive income transfer involving two
individuals i and j with the same health status h. By transferring the amount ∆ = v −
u = t − w > 0 from the richer individual to the poorer one, we move individual i from
s◦i = (x◦i , a◦i ) = (u, h) to s∗i = (x∗i , a∗i ) = (v, h) and individual j from s◦j = (x◦j , a◦j) = (t, h)

14 While this principle makes sense intuitively, it is subject to the same criticism as the one that has been ad-
dressed to the standard principle of transfers in the unidimensional framework. Namely, while the individuals
involved in the transfer have become more equal, the inequalities between each of these two individuals and
any other individual in the population has increased (see, e.g., Chateauneuf and Moyes (2006), Magdalou
and Moyes (2009)).
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to s∗j = (x∗j , a∗j) = (w, h), respectively. The marginal distribution function of health is left
unchanged by a within-type progressive income transfer, while the distributions of income
conditional on health are made more equal or at least no more unequal.

Figure 5.1: A within-type progressive income transfer
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One can easily identify the property of the utility function that guarantees that social
welfare as measured by the utilitarian rule improves as the result of a within-type progressive
transfer:

Lemma 5.1. For all s∗, s◦ ∈ Sn:
∑n
i=1 U (x∗i , a∗i ) =

∑n
i=1 U (x◦i , a◦i ) whenever s∗ is obtained

from s◦ by means of a within-type progressive income transfer if and only if

C2 Uyy(y, h) 5 0, ∀ y ∈ D , ∀ h ∈ A ,

where Uyy(y, h) indicates the second derivative of U(y, h) with respect to income.

The multidimensional nature of the situations under comparison actually plays no role in
the concept of a within-type progressive income transfer, which is merely a restatement of the
usual Pigou-Dalton transfer in our framework. The next transformation, which fully exploits
the bidimensionality of a situation, constitutes in our model a very natural generalisation of
a unidimensional progressive transfer.

Between-Type Progressive Income Transfer. Given two situations s◦, s∗ ∈ Sn, we
say that s∗ is obtained from s◦ by means of a between-type progressive income transfer if there
exist two individuals i and j (i 6= j) such that:

x◦i < x∗i 5 x∗j < x◦j ; a◦i = a∗i < a∗j = a◦j ;(5.2a)

x∗i − x◦i = x◦j − x∗j ; and(5.2b)

s∗g = s◦g, ∀ g 6= i, j.(5.2c)

A between-type progressive income transfer resembles a Pigou-Dalton transfer but there
is a major difference: the beneficiary of the transfer must be poorer than the donor and she
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Figure 5.2: A between-type progressive income transfer
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must also have a lower health status. Put differently, the transfer recipient must be deprived
in both dimensions – income and health – compared to the donor. This kind of transfer is
a particular case of the equalising transformation considered by Müller and Scarsini (2011)
where the transfers occur in possibly all dimensions. The fact that in our case health is an
ordinal and non-transferable attribute rules out the possibility of making transfers along this
dimension. We have represented in Figure 5.2 a between-type progressive income transfer
where individual i with income u and health status h receives an additional income of v − u
while individual j with income t and health status k gives away an amount of income equal
to t− u, where u < v < w < t, v − u = t− w and h < k.

A between-type progressive income transfer can always be decomposed into a within-type
progressive income transfer followed by a favourable permutation provided that one adds a
phantom individual endowed with the income of the beneficiary and the health status of
the donor prior to the transfer. This is illustrated in Figure 5.3 which describes the three
steps involved in this decomposition process. To simplify things, suppose that the population
consists of two individuals i and j and that s∗ = (s∗i , s∗j) is obtained from s◦ = (s◦i , s◦j) by
means of a single between-type progressive transfer so that s◦i = (x◦i , a◦i ) = (u, h), s◦j =
(x◦j , a◦j) = (t, k), s∗i = (x∗i , a∗i ) = (v, h) and s∗j = (x∗j , a∗j) = (w, k), where u < v < w < t,
v − u = t − w = ∆ and h < k. Consider now an individual g whose situation is given
by s◦g = (x◦g, a◦g) = (u, k). Adding individual g to the initial population {i, j}, we obtain
the augmented situation (s◦i , s◦j ; s◦g). Individuals g and j have the same health status but
individual j is richer than individual g. Taking an income amount ∆ > 0 from individual
j and giving it to individual g we obtain the new situation (s◦i , s∗j ; s∗g) which follows from
(s◦i , s◦j ; s◦g) by means of a within-type progressive income transfer. Observe that individual i is
deprived in both income and health compared to individual g. Exchanging now the incomes of
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Figure 5.3: Decomposition of a between-type progressive income transfer
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(b) Step 2. Within-type progressive income transfer
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(c) Step 3. Favourable income permutation
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individuals i and g we obtain the situation (s∗i , s∗j ; s◦g) which follows from situation (s◦i , s∗j ; s∗g)
by means of a favourable income permutation. Individual g is back to her initial situation
so that she actually played only an instrumental role in the decomposition. We could have
equally proceeded by choosing s◦g = (x◦g, a◦g) = (t, h), which would have led to a within-type
progressive income transfer from individual g to individual i followed by a favourable income
permutation between individuals g and j.

Somewhat surprising is the fact that no condition in addition to the ones we have considered
up to now need to be imposed on the utility function for a between-type progressive income
transfer to imply a welfare improvement.

Lemma 5.2. For all s∗, s◦ ∈ Sn:
∑n
i=1 U (x∗i , a∗i ) =

∑n
i=1 U (x◦i , a◦i ) whenever s∗ is obtained

from s◦ by means of a between-type progressive income transfer if conditions C1 and C2 are
satisfied.

According to Lemma 5.2, it is sufficient for welfare as conceived by a utilitarian ethical
observer to increase as the result of a between-type progressive income transfer that the
marginal utility of income be non-increasing in income and in health status. The corresponding
class of utility functions is indicated by

(5.3) U2 := {U ∈ U | U satisfies C1 and C2} .

Contrary to what happens with favourable income permutations and within-type progressive
income transfers, it is not clear whether the conditions we obtain here are also necessary for
a between-type progressive income transfer to result in a welfare improvement.15

Bourguignon (1989) introduces a dominance criterion that coincides with the one which
commands unanimity over all utilitarian ethical observers who use a utility function that is
non-decreasing and concave in income and whose marginal utility in income is non-increasing in
health status. In order to define his criterion, we first need to introduce additional notation and
technicalities. An ordered poverty line is a H-dimensional vector z := (z(1), z(2), . . . , z(H))
such that z(1) = z(2) = · · · = z(H), where z(h) ∈ D is the poverty line assigned to all the
individuals whose health status is equal to h. The poverty line faced by an individual is no
longer exogenously given as in the standard unidimensional framework but it depends now
on her personal situation. The ordered poverty gap in situation s ≡ (x; a) ∈ Sn, when the
ordered poverty line is z – denoted P(z; s) – is defined by

(5.4) P(z; s) =
∑
h∈A

f2(h)
∫ z(h)

v
F1(t |h) dt =

∑
h∈A

f2(h)P (z(h) |h) ,

where

(5.5) P (z(h) |h) = 1
n2(h)

∑
i∈Q1(z(h) |h)

(z(h)− xi)

15 Ebert (2000) makes use of a continuity argument to show that a decreasing in health status marginal utility
of income and concavity with respect to income are also necessary for the sum of utilities to increase as the
result of a between-type progressive income transfer.
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is the conditional poverty gap of the group of individuals with health status equal to h when
the poverty line is set to z(h).

We now introduce the criterion that is at the origin of the present research and that will play
a fundamental role in the following. We say that situation s∗ ordered poverty gap dominates
situation s◦, which we write as s∗ ≥OPG s◦, if and only if:

(5.6) P (z; (x∗; a∗)) 5 P (z; (x◦; a◦)) , ∀ z such that z(1) = z(2) = · · · = z(H).

Definition (5.4) makes clear that the ordered poverty gap is the weighted sum of the conditional
poverty gaps, where the weights are equal to the marginal densities of health status. For later
reference, we say that situation s∗ conditional poverty gap dominates situation s◦, which we
write as s∗ ≥CPG s◦, if and only if:

(5.7) P ∗(z |h) 5 P ◦(z |h) , ∀ z ∈ D , ∀ h ∈ A .

When the situations under comparison have identical marginal distributions of health sta-
tus, it is immediately clear that conditional poverty gap dominance implies ordered poverty
gap dominance, while the converse implication does not hold. Straightforward computations
indicate that

(5.8) P (z ; (̃s; ŝ)) = P (z ; s̃) + P (z ; ŝ) , ∀ s̃ ∈ Sn, ∀ ŝ ∈ Sq (n, q = 1).

Hence, the ordered poverty gap P (z ; s) is additively separable.

While obvious, the next result, which is a direct consequence of the additive separability of
the ordered poverty gap, will play a crucial role in subsequent developments.

Lemma 5.3. For all s∗, s◦ ∈ Sn (n = 2) and all s̃ ∈ Sq (q = 1), we have:

(5.9) s∗ ≥OPG s◦ ⇐⇒ (s∗; s̃) ≥OPG (s◦; s̃) .

The following proposition is nothing but a restatement of well-known results in the unidi-
mensional case (see, e.g., Hardy et al. (1934), Berge (1963), Marshall and Olkin (1979)).

Proposition 5.1. Let s∗, s◦ ∈ Sn be such that a∗ = a◦ and µ (x∗) = µ (x◦). Then, statements
(a) and (b) below are equivalent:

(a) P ∗ (z |h) 5 P ◦ (z |h), for all z ∈ D and all h ∈ A .

(b) s∗ is obtained from s◦ by means of a finite sequence of within-type progressive income
transfers.

The next proposition will play a decisive role in the proof of our main result: it is a
separation result, which states that ordered poverty gap domination can always be decomposed
into headcount poverty domination and conditional poverty gap domination.16

16 Related results are routinely used in the unidimensional framework for decomposing generalised Lorenz
domination into first order stochastic domination and Lorenz domination (see, e.g., Marshall and Olkin
(1979, 5A9)).
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Proposition 5.2. Let s∗, s◦ ∈ Sn be such that a∗ = a◦ and µ (x∗) = µ (x◦). Then, statements
(a) and (b) below are equivalent:

(a-1) P (z; s∗) 5 P (z; s◦), for all z such that z(h) is non-increasing in h;

(a-2) F ∗2 (h) = F ◦2 (h), for all h ∈ A .

(b) There exist s̃ ∈ Sq (q = 0) and ŝ‡ ∈ Sn × Sq such that s̃∗ ≥HP ŝ‡ ≥CPG s̃◦, where
s̃∗ := (s∗; s̃) and s̃◦ := (s◦; s̃).

We obtain the following theorem, which illuminates the normative foundations of the Bour-
guignon (1989) ordered poverty gap quasi-ordering.

Theorem 5.1. Let s∗, s◦ ∈ Sn be such that a∗ = a◦ and µ (x∗) = µ (x◦). Then, statements
(a), (b) and (c) below are equivalent:

(a) There exists q = 0 and a situation s̃ ∈ Sq such that (s∗; s̃) is obtained from (s◦; s̃)
by means of a finite sequence of permutations of the individuals’ situations, favourable
income permutations and/or within-type progressive income transfers.

(b) ∑n
i=1 U (x∗i , a∗i ) =

∑n
i=1 U (x◦i , a◦i ), for all U ∈ U2.

(c-1) P (z; (x∗; a∗)) 5 P (z; (x◦; a◦)), for all z such that z(h) is non-increasing in h;

(c-2) F ∗2 (h) = F ◦2 (h), for all h ∈ A .

Proof.

(a) =⇒ (b). Repeated applications of Lemmas 4.1, 5.1 and 5.2 together with the fact that the
utilitarian rule is invariant with respect to permutations of the individuals’ situations implies
that

(5.10)
n∑
i=1

U (x∗i , a∗i ) +
q∑
i=1

U (xi, ai) ≥
n∑
i=1

U (x◦i , a◦i ) +
q∑
i=1

U (xi, ai) ,

for all U ∈ U2, which implies statement (b).

(b) =⇒ (c). Condition (c-2) is a consequence of the assumption that the marginal distributions
of health in situations s∗ and s◦ are identical. Therefore, we only have to prove that condition
(b) implies condition (c-1). Suppose that there exists z := (z(1), z(2), . . . , z(H)) with z(1) =
z(2) = · · · = z(H) such that

(5.11) P (z; (x∗; a∗)) > P (z; (x◦; a◦)) ,

which, upon using (5.4), can equivalently be rewritten as

(5.12)
H∑
h=1

f ∗2 (h)P ∗(z(h) |h) >
H∑
h=1

f ◦2 (h)P ◦(z(h) |h).
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Upon computation, condition (5.12) reduces to

(5.13)
∑
h∈A

∑
i∈Q∗

1(z(h) |h)
(z(h)− x∗i ) >

∑
h∈A

∑
i∈Q◦

1(z(h) |h)
(z(h)− x◦i ),

or equivalently,

(5.14)
∑
h∈A

∑
i∈N∗

2 (h)
max{0, z(h)− x∗i } >

∑
h∈A

∑
i∈N◦

2 (h)
max{0, z(h)− x◦i },

where by assumption N∗2 (h) = N◦2 (h), for all h = 1, 2, . . . , H. Choose

(5.15) χ(y, h) :=


y − z(h) if v 5 y < z(h),

0 if z(h) 5 y 5 v,

for all h = 1, 2, . . . , H. Appealing to an argument in Fishburn and Vickson (1978, p. 76), it is
possible to approximate χ(y, h) by a twice differentiable function U(y, h) such that Uy(y, h) =
0, Uyy(y, h) 5 0, and Uy(y, h) is non-increasing in h, for all y ∈ (v, v) and all h ∈ A . Therefore,
U ∈ U2, but one can easily check that

(5.16)
n∑
i=1

U (x∗i , a∗i ) <
n∑
i=1

U (x◦i , a◦i ) .

Hence, condition (b) is not verified.

(c) =⇒ (a). Assuming that statement (c) holds and invoking Proposition 5.2, we deduce that
there exists a situation s̃ ∈ Sq (q = 0) and ŝ‡ ∈ Sn ×Sq such that

(5.17) s̃∗ ≥HP ŝ‡ ≥CPG s̃◦,

where s̃∗ := (s∗; s̃) and s̃◦ := (s◦; s̃). Finally, Propositions 4.1 and 5.1 establish that (5.17)
implies statement (a), which completes the argument.

The equivalence between the unanimous agreement among all utilitarian ethical observers
whose marginal utility of income is non-increasing in both attributes and ordered poverty gap
dominance was first established by Bourguignon (1989). However, the normative meaning of
this result is somewhat obscured by the fact that the nature of the underlying elementary
transformations that are needed to transform the dominated situation into the dominating
one was not revealed. Also, the ingenious technique of proof employed by Bourguignon (1989)
relied on the introduction of auxiliary functions whose meaning is unclear. Theorem 5.1
is motivated by these critiques, but we have to admit that the answer it provides is not
totally satisfactory. Indeed, in order to identify the elementary transformations, successive
applications of which allow one to derive the dominating situation from the dominating one, it
may be the case that we have to introduce a phantom situation. Thanks to the separability of
the different normative criteria we appeal to, the phantom situation plays only an instrumental
role in the derivation of our result. There is a strong presumption that this instrumental
situation actually mirrors the auxiliary functions used by Bourguignon (1989) in his proof.
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Leaving aside the fact that we do not provide a means for identifying with precision the
phantom situation, the main limitation of Theorem 5.1 is that it is silent as far as between-
type progressive income transfers are concerned. Indeed, we know from Lemma 5.2 that all
utilitarian ethical observers whose marginal utility of income is non-increasing in income and
health status will consider that a between-type progressive transfer results in improvement
in social welfare. However, we have not succeeded in showing that a finite sequence of such
transformations enables the dominated situation to be transformed into the dominating one,
nor have we been able to prove that this is impossible. All we have shown is that it is possible
to transform the dominated situation into the dominating situation – where both situations
are augmented by the phantom situation – by means of favourable income permutations and
within-type progressive income transfers.

6. Extensions

Variable population size While we have kept the population size n fixed up to now, we
note that our approach easily extends to the case of variable population sizes by invoking the
principle of population due to Dalton (1920). According to this principle, the society’s welfare
per head is not affected by a replication of the distribution. All of our results generalise to this
case provided one substitutes the average utilitarian social welfare function for the classical
utilitarian one.

Different mean incomes and distributions of health status So far we have restricted our
attention to the case where the situations under comparison have identical marginal distri-
butions of health status and equal mean incomes. These restrictions were to a large extent
motivated by the fact that we were interested in the basic notion of inequality in our partic-
ular framework. It was therefore desirable to rule out any considerations for efficiency that
can be associated with transformations of the distributions that result in modifications of the
distributions of health status as well as changes in mean incomes. While these restrictions
allowed us to focus on equity considerations, the practical relevance of the results we have
obtained is limited. Theorem 5.1 can be extended to the general case where the marginal dis-
tributions are no longer fixed and mean incomes no longer equal provided that one is willing
to introduce additional restrictions on the utility functions. Or equivalently, one has to think
of those transformations of the distributions that modify the distribution of health status and
mean income, and that at the same time can be considered improvements from a social welfare
point of view.

The two following transformations are the most natural that one can think of when the
situations under comparisons have different marginal distributions of income and health.

Income Increment. Given two situations s◦, s∗ ∈ Sn, we say that situation s∗ is obtained
from situation s◦ by means of an income increment if there exists one individual i such that:

(6.1) x∗i > x◦i , a
∗
i = a◦i and s∗g = s◦g, ∀ g 6= i.

24



N. Gravel and P. Moyes/Ethically Robust Comparisons of Bidimensional Distributions

Health Status Increment. Given two situations s◦, s∗ ∈ Sn, we say that situation s∗ is
obtained from situation s◦ by means of a health status increment if there exists one individual
i such that:

(6.2) x∗i = x◦i , a
∗
i > a◦i and s∗g = s◦g, ∀ g 6= i.

It is immediately clear that social welfare as measured by the utilitarian rule will increase
as the result of an income increment if and only if the utility function is non-decreasing in
income, namely:

C3 Uy(y, h) = 0, ∀ y ∈ D, ∀ h ∈ A .

Similarly, for a health status increment to imply a social welfare improvement according to
the same principle it is necessary and sufficient that the utility function is non-decreasing in
health status:

C4 U(y, h) 5 U(y, k), ∀ y ∈ D, ∀ h, k ∈ A (h < k).

Consider now the following class of utility functions:

(6.3) U ∗
2 := {U ∈ U | U satisfies C1, C2, C3 and C4} .

Then, dispensing with the restrictions that the situations under comparison have identical
marginal distributions and equal means, we obtain:

Theorem 6.1. Let s∗, s◦ ∈ Sn. Then, statements (a), (b) and (c) below are equivalent:

(a) There exists q = 0 and a situation s ∈ Sq such that (s∗; s) is obtained from (s◦; s)
by means of a finite sequence of permutations of the individuals’ situations, income
increments, health status increments, favourable income permutations and/or within-
type progressive income transfers.

(b) ∑n
i=1 U (x∗i , a∗i ) =

∑n
i=1 U (x◦i , a◦i ), for all U ∈ U ∗

2 .

(c-1) P (z; (x∗; a∗)) 5 P (z; (x◦; a◦)), for all z such that z(h) is non-increasing in h;

(c-2) F ∗2 (h) 5 F ◦2 (h), for all h ∈ A .

From utilitarian unanimity to welfarist unanimity We have followed the usual practice in
the stochastic dominance literature that consists in appealing to the utilitarian rule when
comparing alternative distributions. Despite this preeminence, utilitarianism has been criti-
cised on different grounds, the most serious of which being its insensitivity to the distribution
of the total sum of the individuals’ well-beings (see, e.g., Sen (1973)). One might prefer to
appeal to principles that express some aversion to the inequality in the distribution of indi-
vidual utilities such as the maximin or the leximin. To conform with this view, let social
welfare in situation s ∈ S be given by G(U(x; a)) := G (U (x1, a1) , . . . , U (xn, an)), where
G ∈ G := {g : Rn → R} is the social welfare function. Then, situation s∗ will be considered
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no worse than situation s◦ by an ethical observer endowed with the utility function U ∈ U

and the social welfare function G, if and only if

(6.4) G (U (x∗; a∗)) = G (U (x◦; a◦)) .

Aversion to inequality is typically captured by the property of Schur-concavity and we
indicate by GSC the set of social welfare functions that are monotone and Schur-concave
(see Kolm (1969), Dasgupta et al. (1973)).17 The utility function U and the social welfare
function G capture the welfarist ethical observer’s normative judgement and these are the only
parameters that permit one to distinguish one such ethical observer from another. In order to
rule out as much arbitrariness as possible we require that all welfarist ethical observers whose
utility functions U belong to a given class U ∗ ⊂ U and whose social welfare functions are
members of a class G ∗ ⊂ G to agree on the ranking of the situations under comparison.

Welfarist Unanimity Rule. We say that situation s∗ is no worse than situation s◦ for
the welfarist unanimity rule over the class of utility functions U ∗ ⊂ U and the class of social
welfare functionals G ∗ ⊂ G , if and only if

(6.5) G (U (x∗; a∗)) = G (U (x◦; a◦)) , ∀ U ∈ U ∗, ∀ G ∈ G ∗.

Clearly welfarist unanimity implies utilitarian unanimity whatever the class of utility func-
tions. Actually, since the converse statement does not generally hold, it is more demanding to
require unanimous agreement among all welfarist ethical observers than among all utilitarian
ones. Quite interesting for our purpose is the fact that the utilitarian and welfarist unanimity
rules give the same ranking of the situations to be compared under suitable restrictions on
the utility functions when G ∗ ⊆ GSC . More precisely, Gravel and Moyes (2011) have shown
that a sufficient condition for welfarist and utilitarian unanimities to rank social states in the
same way is that the class of utility functions is closed under functional composition by all
non-decreasing and concave functions, a property satisfied by all the classes of utility functions
we have considered here. It follows that all the results of this paper for utilitarian unanimity
are equally valid when one requires welfarist unanimity.

7. Conclusion

Our aim was to investigate the normative foundations of two implementable criteria – the so-
called headcount poverty and ordered poverty gap quasi-orderings – designed for comparing
distributions of two attributes, one of which – income – is cardinally measurable, while the
other – health – is ordinal. More precisely we wanted (i) to identify the class of utility functions
such that all utilitarian ethical observers whose value judgements belong to this class rank the
situations under comparison in the same way as the dominance criterion, and (ii) to uncover the
elementary transformations, finite applications of which, permit one to derive the dominating
situation from the dominated one.
17 The mapping G : Rn → R is Schur-concave if G(Bu) = G(u), for all u = (u1, . . . , un) and all bistochastic
matrices B (see Marshall and Olkin (1979)). It is monotone if G(u) = G(v), for all u = (u1, . . . , un) and
v = (v1, . . . , vn) such that ui = vi, for all i = 1, 2, . . . , n.
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A marginal utility of income that is non-increasing in health ensures that the utilitarian
unanimity rule and the headcount poverty quasi-ordering rank the situations in the same way,
while a favourable income permutation is the transformation which, if applied a finite number
of times, allows one to derive the dominating situation from the dominated one. As far as
the headcount poverty – and equivalently, first order stochastic dominance – criterion is con-
cerned, Theorem 4.1 provides the desired equivalence. This result supplements Atkinson and
Bourguignon (1987, Proposition 2) by identifying the transformations of the distributions that
permit us to derive by successive application the dominating distribution from the dominated
one.

Our main contribution is to uncover the value judgements implicit in the Bourguignon
(1989) ordered poverty gap criterion by showing that repeated applications of favourable
income permutations and within-type progressive income transfers allow one to transform the
dominated situation into the dominating one. This permitted us to obtain a result (Theorem
5.1) in the vein of the Hardy-Littlewood-Pólya theorem which complements Bourguignon’s
original result. However, things are to some extent less satisfactory than in the case of the
headcount poverty criterion since we did not manage to establish this equivalence without
resorting to the adjunction of a phantom situation. On the other hand, we know that all
utilitarian ethical observers whose marginal utilities of income are non-increasing in both
income and health status will record as welfare-improving a between-type progressive income
transfer. However, it is still an open question whether it is possible to obtain the dominating
situation from the dominated one by means of between-type progressive income transfers
without resorting to phantom individuals.

Other limitations of the present analysis concern the number of attributes considered and
also the assumptions relative to the measurability of the attributes we have made. Focus-
ing on just two attributes is certainly restrictive and does not allow one to capture all the
relevant dimensions of a person’s well-being. The HDI is a good example of an aggregate
measure focusing on three essential factors that contribute to a person’s well-being: income,
life expectancy and literacy. Increasing the number of dimensions is certainly one direction
to go, but such an extension is likely to become very involved quite quickly. To give but one
example, the meaning of correlation, which lies at the heart of the concept of a favourable
income permutation, needs to be substantially reformulated when more than two attributes
are considered. Suppose there are three attributes as in the HDI case: then the welfare impact
of a favourable permutation involving the first and second attribute will depend on the quan-
tity of the third attribute received by the individuals involved in the transformation.18 This
route is followed by Decancq (2011), who identifies the dominance criteria that generalise the
headcount poverty quasi-ordering when there are more than two attributes. Also the question
arises of knowing if it could be possible to adapt the Bourguignon (1989) approach in order

18 A way of avoiding this difficulty is to make the extra value judgement that some attributes are separable
from each other, which rules out any possibility of compensation between these attributes. This route is
followed, for instance, by Muller and Trannoy (2011), who assume separability between life expectancy at
birth and educational attainment, but still retain the possibility of using income to compensate for poor
health and low education.
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to rank situations involving only cardinal attributes, as it is done in Kolm (1977) or Atkinson
and Bourguignon (1982).

Finally, it must be recognised that there is a general skepticism concerning the ability of
the dominance approach to provide relevant information because of the incomplete nature of
the quasi-orderings it relies on. The non-decisiveness of this approach is accentuated in the
multi-attribute case and it is expected to be the more serious as the number of dimensions
increases. The criteria we investigate in this paper are no exception and, to some extent, they
may be considered as a first step that has to supplemented by the use of multidimensional
cardinal indices, for instance, like those characterised in Ebert (1995). However, to conclude
on a more positive note, it is worth mentioning that the criteria we have examined provide
conclusive verdicts in a non-negligible number of cases, as the evidence in Gravel et al. (2009)
shows.

8. Proofs of Lemmas and Propositions

Proof of Lemma 4.1. See Moyes (2011a, Remark 3.1).

Proposition 4.1 is actually a generalisation of Moyes (2011b, Theorem 3.1) and the proof
follows closely the arguments used for establishing this result. Before we proceed to the
proof of Proposition 4.1, we need to introduce additional notation and definitions. Since the
notation is particularly heavy in what follows, we momentarily use N(h) and n(h) in place of
N2(h) and n2(h) to indicate the set and number of individuals who have health statuses h in
situation s ≡ (x; a) ∈ Sn. It is convenient to begin with to consider the case of distributions
of income for a fixed and homogeneous population of m individuals (m = 2). The non-
decreasing rearrangement of an income distribution u := (u1, . . . , um) ∈ Dm is indicated by
ũ := (ũ1, ũ2, . . . , ũm), where ũ1 5 ũ2 5 · · · 5 ũm. Then, given two income distributions
u := (u1, . . . , um),v := (v1, . . . , vm) ∈ Dm, we say that u rank order dominates v, which we
write u ≥RO v, if and only if ũi = ṽi, for all i = 1, 2, . . . ,m. We indicate respectively by
∼RO and >RO the symmetric and asymmetric components of ≥RO defined in the usual way,
and we note that u ∼RO v if and only if ũi = ṽi, for all i = 1, 2, . . . ,m, in which case u is a
permutation of v.

We associate to the situation s ≡ (x; a) ∈ Sn the heterogeneous income distribution u :=
(u1; . . . ; uH), where

(8.1) uh := (uh1 , uh2 , . . . , uhn(h)),

is the income distribution of the subpopulation consisting of all individuals whose health
statuses are equal to h. Without loss of generality, we assume that incomes within populations
of individuals of the same type are non-decreasingly arranged so that

(8.2) uh1 5 uh2 5 · · · 5 uhn(h).

We indicate by u(h) := (u1; u2; . . . ; uh) the distribution of the incomes received by the indi-
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viduals with health statuses equal to h or less and we note that u(H) = u. We let

(8.3) ũ(h) := (ũ(h)
1 , ũ

(h)
2 , . . . , ũ

(h)
ñ(h)−1, ũ

(h)
ñ(h))

stand for the rearrangement of u(h) such that

(8.4) ũ
(h)
1 5 ũ

(h)
2 5 · · · 5 ũ

(h)
ñ(h)−1 5 ũ

(h)
ñ(h),

where ñ(h) := ∑h
k=1 n(k).

Consider two situations s∗ ≡ (x∗; a∗) and s◦ ≡ (x◦; a◦) such that a∗ = a◦, which implies
that n∗(h) = n◦(h) = n(h): the number of individuals with exactly health status h in the
two situations is the same. Situations s∗ and s◦ only differ with respect to the way income is
distributed among the health types. Let u and v be the heterogeneous income distributions
associated with the situations s∗ and s◦, respectively. Then, we say that u sequential rank order
dominates v, which we write u ≥SRO v, if and only if u(h) ≥RO v(h), for all h = 1, 2, . . . , H−1,
and u(H) ∼RO v(H). If in addition u(k) >RO v(k), for some k < H, then we say that u
sequential rank order strictly dominates v, which we write u >SRO v. Important for subsequent
developments is the fact that, if u ≥SRO v, then u is a permutation of v. It must be noted
that conditions (b-1), (b-2) and (b-3) of Proposition 4.1 are actually equivalent to the fact
that u ≥SRO v.19 Making use of (8.4), u ≥SRO v amounts to requiring that

ũ(h)
g = ṽ(h)

g , ∀ g = 1, 2, . . . , ñ(h), ∀h = 1, 2, . . . , H − 1, and(8.5a)

ũ(H)
g = ṽ(H)

g , ∀ g = 1, 2, . . . , ñ(H).(8.5b)

Given the above conventions, the statement that s∗ ≡ (x∗; a∗) is obtained from s◦ ≡ (x◦; a◦) by
means of a favourable permutation is equivalent to saying that there exist two health statuses
i, j ∈ A with i < j and two individuals s, t with s ∈ N(i) and t ∈ N(j) such that

vis = ujt < uis = vjt ;(8.6a)

vig = uig, ∀ g 6= s; vjg = ujg, ∀ g 6= t; and(8.6b)

u(g) = v(g), ∀ g 6= i, j.(8.6c)

Finally, we introduce three technical results that will make the proof of Proposition 4.1
easier. The first lemma is well-known (see, e.g., Saposnik (1981)) and it simply states that
the ranking of income distributions by utilitarian unanimity over the class of non-decreasing
utility functions is equivalent to the ranking implied by the rank order criterion. More precisely,
letting Φ := {φ : D → R | φ is non-decreasing}, we have:

Lemma 8.1. Let u,v ∈ Dm (m = 2). Then, statements (a) and (b) below are equivalent:

(a) ∑m
g=1 φ(ug) =

∑m
g=1 φ(vg), for all φ ∈ Φ.

(b) u ≥RO v.

19 This follows from the fact that rank order dominance and first order stochastic dominance generate the same
ranking of distributions (see, e.g., Levy (1998, Chapter 4)).
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The second lemma provides a similar equivalence for the case of heterogeneous income
distributions by invoking the sequential rank order criterion. Before we state the result, we
need to introduce the following class of H-tuples of functions:

(8.7) Ψ :=
{
ψ := (ψ1, . . . , ψH) | ψ′h(s) = ψ′h+1(s), ∀ s ∈ D , ∀h = 1, 2, . . . , H − 1

}
.

Then, we have:

Lemma 8.2. Let u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1)× · · ·×Dn(H), where n(h) = 1,
for all h ∈ A . Then, statements (a) and (b) below are equivalent:

(a) ∑H
h=1

∑n(h)
i=1 ψh(uhi ) =

∑H
h=1

∑n(h)
i=1 ψh(vhi ), for all ψ := (ψ1, . . . , ψH) ∈ Ψ.

(b) u ≥SRO v.

Proof.
(a) =⇒ (b). Let λ := (λ1, . . . , λH) and consider the H-tuple ψ := (ψ1, . . . , ψH) defined
by ψh(s) := λh φ(s), for all h = 1, 2, . . . , H. Clearly, ψ := (ψ1, . . . , ψH) ∈ Ψ provided
that φ′(s) = 0 and λ1 = λ2 = · · · = λH , which we assume. Choosing successively λ :=
(1, 0, 0, . . . , 0, 0), λ := (1, 1, 0, . . . , 0, 0), . . . ,λ := (1, 1, 1, . . . , 1, 0), λ := (1, 1, 1, . . . , 1, 1), and
λ := (−1,−1,−1, . . . ,−1,−1), condition (a) reduces to

n(1)∑
g=1

φ(u1
g) + · · ·+

n(h)∑
g=1

φ(uhg) =
n(1)∑
g=1

φ(v1
g) + · · ·+

n(h)∑
g=1

φ(vhg ), ∀h = 1, 2, . . . , H − 1, and(8.8a)

n(1)∑
g=1

φ(u1
g) + · · ·+

n(H)∑
g=1

φ(uHg ) =
n(1)∑
g=1

φ(v1
g) + · · ·+

n(h)∑
g=1

φ(vHg ),(8.8b)

which holds for all functions φ ∈ Φ. Appealing to Lemma 8.1, we conclude that u(h) ≥RO v(h),
for all h = 1, 2, . . . , H − 1, and u(H) ∼RO v(H), hence u ≥SRO v.

(b) =⇒ (a). Given any u := (u1; . . . ; uH) ∈ Dn(1)×· · ·×Dn(H), we have the following equality:
H∑
h=1

n(h)∑
i=1

ψh(uhi ) =
H∑
h=1

[ n(h)∑
i=1

ψh(uhi ) +
h−1∑
k=1

n(k)∑
j=1

ψh(ukj )−
h−1∑
k=1

n(k)∑
j=1

ψh(ukj )
]

=
H−1∑
h=1

[
h∑
k=1

n(k)∑
i=1

(
ψh(uki )− ψh+1(uki )

)]
+

H∑
k=1

n(k)∑
i=1

ψH(uki ).

(8.9)

Letting fh(s) := ψh(s) − ψh+1(s), for h = 1, 2, . . . , H − 1, and fH(s) := ψH(s), and upon
substituting into (8.9), we obtain

(8.10)
H∑
h=1

n(h)∑
i=1

ψh(uhi ) =
H−1∑
h=1

[
h∑
k=1

n(k)∑
i=1

fh(uki )
]

+
H∑
k=1

n(k)∑
i=1

fH(uki ) =
H∑
h=1

ñ(h)∑
i=1

fh(ũ(h)
i ).

Because f ′h(s) := ψ′h(s) − ψ′h+1(s), in the light of (8.10), condition (a) can be equivalently
rewritten as

(8.11)
H∑
h=1

n(h)∑
i=1

(
ψh(uhi )− ψh(vhi )

)
=

H∑
h=1

ñ(h)∑
i=1

(
fh(ũ(h)

i )− fh(ṽ(h)
i )

)
= 0,

30



N. Gravel and P. Moyes/Ethically Robust Comparisons of Bidimensional Distributions

for all fh(s) that are non-decreasing in s. Making use of the Mean Value Theorem, condition
(8.11) is equivalent to

(8.12)
H−1∑
h=1

ñ(h)∑
i=1

f ′h(ξhi )
[
ũ

(h)
i − ṽ

(h)
i

]
+

ñ(H)∑
i=1

f ′H(ξHi )
[
ũ

(H)
i − ṽ(H)

i

]
= 0,

for some ξhi ∈ (ũ(h)
i , ṽ

(h)
i ), for all i ∈ {1, 2, . . . , n(h)− 1, n(h)} and all h ∈ A . Given (8.5) and

since f ′h(s) = 0, for all s and all h = 1, 2, . . . , H − 1, we conclude that it is sufficient for (8.12)
to hold that u ≥SRO v.

The assumption that individuals, whatever their health statuses, have different incomes
in the two situations under comparison makes things easier. In conjunction with Lemma
8.2, our last technical result confirms that there is no loss of generality when comparing
heterogeneous income distributions by means of utilitarian unanimity to restrict attention
to the subpopulation of individuals whose incomes differ in the two situations. Given u :=
(u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1) × · · · × Dn(H), where n(h) = 1, for all h ∈ A , we
define:

A0 :=
{
h ∈ A

∣∣∣uhg = vhg , ∀ g ∈ N(h)
}

;(8.13a)

A1 :=
{
h ∈ A

∣∣∣uhg 6= vhg , ∃ g ∈ N(h)
}

;(8.13b)

S(h) :=
{
g ∈ N(h)

∣∣∣uhg = vhg
}

for h ∈ A1;(8.13c)

T (h) :=
{
g ∈ N(h)

∣∣∣uhg 6= vhg
}

for h ∈ A1;(8.13d)

and we note that ∅ ⊆ S(h) ⊂ N(h), ∅ ⊂ T (h) ⊆ N(h), and S(h) ∪ T (h) = N(h), for all
h ∈ A1. Given the H-tuple ψ := (ψ1, . . . , ψH) ∈ Ψ, we denote by ψ(A1) := ((ψh)h∈A1) its
restriction to A1 and by Ψ(A1) the set of such profiles. Then, we have the following obvious
result:

Lemma 8.3. Let u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1)× · · ·×Dn(H), where n(h) = 1,
for all h ∈ A . Then, statements (a) and (b) below are equivalent:

(a) ∑H
h=1

∑n(h)
i=1 ψh(uhi ) =

∑H
h=1

∑n(h)
i=1 ψh(vhi ), for all ψ := (ψ1, . . . , ψH) ∈ Ψ.

(b) ∑h∈A1

∑
i∈T (h) ψh(uhi ) =

∑
h∈A1

∑
i∈T (h) ψh(vhi ), for all ψ(A1) ∈ Ψ(A1).

Proof of Proposition 4.1. One can easily check that if u is obtained from v by means of
a finite sequence of favourable permutations, then u ≥SRO v. We therefore prove the converse
implication and, thanks to Lemmas 8.2 and 8.3, we assume without loss of generality that

(8.14) uhg 6= vhg , ∀ g ∈ N(h), ∀h ∈ A .

Now consider the following indices:

i := min
{
h ∈ A

∣∣∣ ∃ g ∈ N(h) : uhg = up` , ∀ ` ∈ N(p), ∀ p ∈ A
}

;(8.15a)

j := min
{
h ∈ A

∣∣∣ ∃ g ∈ N(h) : vhg = vp` , ∀ ` ∈ N(p), ∀ p ∈ A
}

;(8.15b)
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s := min
{
g ∈ N(i)

∣∣∣ uig = ui`, ∀ ` ∈ N(i)
}

;(8.15c)

t := min
{
g ∈ N(j)

∣∣∣ vjg = vj` , ∀ ` ∈ N(j)
}
.(8.15d)

By definition of the indices i, j, s and t, we have

ui1 5 · · · 5 uis−1 < uis = uis+1 = · · · = uin(i);(8.16a)

uhg < uis, ∀ g ∈ N(h), ∀h = 1, 2, . . . , i− 1;(8.16b)

uis = uhg , ∀ g ∈ N(h), ∀h = i+ 1, i+ 2, . . . , H;(8.16c)

vj1 5 · · · 5 vjt−1 < vjt = vjt+1 = · · · = vjn(j);(8.16d)

vgh < vjt , ∀ g ∈ N(h), ∀h = 1, 2, . . . , j − 1;(8.16e)

vjt = vhg , ∀ g ∈ N(h), ∀h = j + 1, i+ 2, . . . , H.(8.16f)

Furthermore, uis := max{uhg} = max{vhg} =: vjt , because u is a permutation of v. We note that
by construction i < j. Indeed, we cannot have i = j, for, if this were the case, then uin(i) =
vin(i), which is ruled out by (8.14). Suppose next that j < i and consider the distributions
u(j) := (u1; u2; . . . ; uj) and v(j) := (v1; v2; . . . ; vj). By definition of vjt , we have

(8.17) ũ
(j)
ñ(j) < uis = vjt = ṽ

(j)
ñ(j).

Hence ¬ [u(j) ≥RO v(j)], which contradicts the fact that u ≥SRO v by assumption.

The idea of the proof is to operate favourable permutations within the subpopulation N(i)∪
N(i+1)∪· · ·∪N(j−1)∪N(j) so that, at the end of this process, one obtains a new distribution
z such that (i) uig = zig = vjt , for some g ∈ N(i), and (ii) u ≥SRO z >SRO v. Let

k := min
{
h ∈ {i, . . . , j − 1}

∣∣∣∃ g ∈ N(h) :vhg = vp` ,∀ ` ∈ N(p),∀ p ∈ {i, . . . , j − 1}
}

;(8.18a)

r := min
{
g ∈ N(k)

∣∣∣ vkg = vk` ,∀ ` ∈ N(k)
}
.(8.18b)

We note that it is possible that k = i and therefore that r ∈ {1, 2, . . . , s− 1}. By definition of
the indices k and r, we have:

vkr 5 · · · 5 vkr−1 5 vkr = vkr+1 = · · · = vkn(k);(8.19a)

vhg < vkr , ∀ g ∈ N(h), ∀h ∈ {i, i+ 1, . . . , k − 1};(8.19b)

vkr = vhg , ∀ g ∈ N(h), ∀h ∈ {k + 1, k + 2, . . . , j − 1};(8.19c)

vkr < vjt .(8.19d)

Next we construct a new distribution w := (w1; . . . ; wH) starting from v := (v1; . . . ; vH) by
means of a favourable permutation as indicated below

wh = vh, ∀h ∈ A (h 6= k, j);(8.20a)

wkg = vkg , ∀ g ∈ N(k) (g 6= n(k)); wkn(k) = vjt ;(8.20b)

wjg = vjg, ∀ g ∈ N(j) (g 6= t); wjt = vkr ;(8.20c)

32



N. Gravel and P. Moyes/Ethically Robust Comparisons of Bidimensional Distributions

Ta
bl
e
8.
1:

C
on

st
ru
ct
io
n
of

w
st
ar
tin

g
fro

m
v
by

m
ea
ns

of
a
fa
vo

ur
ab

le
pe

rm
ut
at
io
n

T
yp

e
i

T
yp

e
k

T
yp

e
j

··
·

1
··
·
s
−

1
s

s
+

1
··
·

n
(i

)
··
·

1
··
·
r
−

1
r

r
+

1
··
·

n
(k

)
··
·

1
··
·
t
−

1
t

t
+

1
··
·

n
(j

)
··
·

u
:
··
·
u

i 1
··
·

u
i s
−

1
u

i s
u

i s
+

1
··
·
u

i n
(i

)
··
·
u

k 1
··
·

u
k r

−
1

u
k r

u
k r

+
1
··
·

u
k n

(k
)
··
·
u

j 1
··
·

u
j t−

1
u

j t
u

j t+
1
··
·
u

j n
(j

)
··
·

w
:
··
·

v
i 1
··
·

v
i s
−

1
v

i s
v

i s
+

1
··
·

v
i n

(i
)
··
·

v
k 1
··
·

v
k r
−

1
v

k r
v

k r
+

1
··
·

v
j t

··
·

v
j 1
··
·

v
j t−

1
v

k n
(k

)
v

j t+
1
··
·

v
j n

(j
)
··
·

v
:
··
·

v
i 1
··
·

v
i s
−

1
v

i s
v

i s
+

1
··
·

v
i n

(i
)
··
·

v
k 1
··
·

v
k r
−

1
v

k r
v

k r
+

1
··
·

v
k n

(k
)
··
·

v
j 1
··
·

v
j t−

1
v

j t
v

j t+
1
··
·

v
j n

(j
)
··
·

33



N. Gravel and P. Moyes/Ethically Robust Comparisons of Bidimensional Distributions

and illustrated in Table 8.1.

We now examine the distributions u(h), w(h) and v(h), for h = 1, 2, . . . , H. We consider
successively four cases.

Case 1: 1 5 h 5 i−1. By assumption u(h) ≥RO v(h) and by construction w(h) = v(h). Hence,
ũ(h)
g = w̃(h)

g = ṽ(h)
g , for all g ∈ N(h).

Case 2: i 5 h 5 j − 1. If k > h, the argument is the same as in Case 1, so we can restrict
attention to the case in which k ∈ {i, i + 1, . . . , h − 1, h}. We indicate by g∗ = χ(h, k) the
largest rank with the income vkr in the ordered distribution ṽ(h), as shown in

(8.21) ṽ
(h)
1 5 · · · 5 ṽ

(h)
g∗−(n(k)−r)−1 5 ṽ

(h)
g∗−(n(k)−r) = · · · = ṽ

(h)
g∗ ≡ vkn(k) < ṽ

(h)
g∗+1 5 · · · 5 ṽ

(h)
ñ(h),

where we have made use of the fact that by definition vkr = vkg , for all g = r+1, r+2, . . . , n(k).
We indicate by

(8.22) ρ∗ := #
{
g ∈ {1, 2, . . . , ñ(h)− 1, ñ(h)}

∣∣∣ ṽ(h)
g > ṽ

(h)
g∗ = vkr

}
= ñ(h)− g∗

the number of individuals who in the distribution v(h) := (v1; v2; . . . ; vh) have incomes greater
than vkr . Because by definition vkr = vhg , for all g ∈ N(h) and all h ∈ {i, i + 1, . . . , j − 1}, we
note that

(8.23) n(i) + n(i+ 1) + · · ·+ n(h) 5 g∗ = χ(h, k) 5 ñ(h),

or equivalently that

(8.24) ρ∗ 5 ñ(h)− (n(i) + n(i+ 1) + · · ·+ n(h)) = n(1) + n(2) + · · ·+ n(i− 1).

Suppose first that g∗ = ñ(h). Then, it follows from the definition of w̃(h) and the fact that
ũ(h) ≥RO ṽ(h) by assumption that

ũ(h)
g = w̃(h)

g = ṽ(h)
g , ∀ g = 1, 2, . . . , ñ(h)− 1, and(8.25a)

uis = ũ
(h)
ñ(h) = w̃

(h)
ñ(h) = vjt > vkr = vkn(k) ≡ ṽ

(h)
ñ(h).(8.25b)

Consider next the case where g∗ ∈ {1, 2, . . . , ñ(h) − 1}. Invoking again the definition of
w̃(h) and the fact that ũ(h) ≥RO ṽ(h) by assumption, we have

ũ(h)
g = w̃(h)

g = ṽ(h)
g , ∀ g = 1, 2, . . . , g∗ − 1, and(8.26a)

uis = ũ
(h)
ñ(h) = w̃

(h)
ñ(h) = vjt > vkr = vkn(k) ≡ ṽ

(h)
ñ(h).(8.26b)

It remains to examine what happens when g = g∗, g∗ + 1, . . . , ñ(h)− 1.

By definition of the indices i and s, we have

(8.27) ũ
(h)
1 5 · · · 5 ũ

(h)
ñ(h−1)+1 5 · · · 5 ũ

(h)
ñ(h−1)+s−1 < ũ

(h)
ñ(h−1)+s = · · · = ũ

(h)
ñ(h) = uis .
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Given a non-empty and finite set A : = {a1, a2, . . . , am}, where ai ∈ R, for all i = 1, 2, . . . ,m
(m = 2), we denote by maxρA the ρth-greatest element in A with 1 5 ρ 5 m. Since by
definition ũ(h)

ñ(h) = uis > ũ(i−1)
g , for all g = 1, 2, . . . , ñ(i− 1)− 1, ñ(i− 1), we deduce that

(8.28)
{
{ũ(i−1)

g }g=1,2,...,ñ(i−1)
}
⊆
{
{ũ(h)

g }g=1,2,...,ñ(h)−1
}
.

Thus we have:

ũ
(h)
ñ(h)−1 = max

1

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

1

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−0; ρ = 1

ũ
(h)
ñ(h)−2 = max

2

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

2

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−1; ρ = 2

... ...

ũ
(h)
ñ(h)−ρ∗+1 = max

ρ∗−1

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

ρ∗−1

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−ρ∗+2; ρ = ρ∗−1

ũ
(h)
ñ(h)−ρ∗ = max

ρ∗

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

ρ∗

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−ρ∗+1; ρ = ρ∗.

More compactly:

(8.29) ũ
(h)
(ñ(h)−1)−ρ = max

ρ

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

ρ

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−ρ+1,

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗.

Similarly, since by definition ṽ(h)
g∗ = vkn(k) = vpg , for all g ∈ N(p) and all p = i, i + 1, . . . , h,

we deduce from (8.21) that

(8.30)
{
{ṽ(h)

g }g=g∗+1,g∗+2,...,ñ(h)
}
⊆
{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}
.

This implies in turn that

ṽ
(h)
ñ(h)−0 = max

1

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

1

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−0; ρ = 1

ṽ
(h)
ñ(h)−1 = max

2

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

2

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−1; ρ = 2

... ...

ṽ
(h)
ñ(h)−ρ∗+2 = max

ρ∗−1

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

ρ∗−1

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−ρ∗+2; ρ = ρ∗−1

ṽ
(h)
ñ(h)−ρ∗+1 = max

ρ∗

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

ρ∗

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−ρ∗+1; ρ = ρ∗.

More compactly:

(8.31) ṽ
(h)
ñ(h)−ρ+1 = max

ρ

{
{ṽ(h)

g }g=g∗+1,g∗+2,...,ñ(h)
}
5 max

ρ

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−ρ+1,

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗.

Combining (8.29) and (8.31), making use of the definition of w and of the fact that
u(i−1) ≥RO v(i−1), we obtain

ũ
(h)
ñ(h)−1 = ũ

(i−1)
ñ(i−1)−0 = ṽ

(i−1)
ñ(i−1)−0 = ṽ

(h)
ñ(h)−0 = w̃

(h)
ñ(h)−1 = ṽ

(h)
ñ(h)−1; ρ = 1
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ũ
(h)
ñ(h)−2 = ũ

(i−1)
ñ(i−1)−1 = ṽ

(i−1)
ñ(i−1)−1 = ṽ

(h)
ñ(h)−1 = w̃

(h)
ñ(h)−2 = ṽ

(h)
ñ(h)−2; ρ = 2

... ...

ũ
(h)
ñ(h)−ρ∗+1 = ũ

(i−1)
ñ(i−1)−ρ∗+2 = ṽ

(i−1)
ñ(i−1)−ρ∗+2 = ṽ

(h)
ñ(h)−ρ∗+2 = w̃

(h)
ñ(h)−ρ∗+1 = ṽ

(h)
ñ(h)−ρ∗+1; ρ = ρ∗−1

ũ
(h)
ñ(h)−ρ∗ = ũ

(i−1)
ñ(i−1)−ρ∗+1 = ṽ

(i−1)
ñ(i−1)−ρ∗+1 = ṽ

(h)
ñ(h)−ρ∗+1 = w̃

(h)
ñ(h)−ρ∗ = ṽ

(h)
ñ(h)−ρ∗ ; ρ = ρ∗.

More compactly:

(8.32) ũ
(h)
ñ(h)−ρ = ũ

(i−1)
ñ(i−1)−ρ+1 = ṽ

(i−1)
ñ(i−1)−ρ+1 = ṽ

(h)
ñ(h)−ρ+1 = w̃

(h)
ñ(h)−ρ = ṽ

(h)
ñ(h)−ρ,

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗, or equivalently

(8.33) ũ(h)
g = ũ

(i−1)
g+1 = ṽ

(i−1)
g+1 = ṽ

(h)
g+1 = w̃(h)

g = ṽ(h)
g ,

for all g = g∗, g∗ + 1, . . . , ñ(h)− 2, ñ(h)− 1. Thus, we conclude that

(8.34) ũ(h)
g = w̃(h)

g = ṽ(h)
g , ∀ g = g∗, g∗ + 1, . . . , ñ(h)− 2, ñ(h)− 1.

Case 3: j 5 h 5 H − 1. By assumption u(h) ≥RO v(h) and by construction w(h) is a
permutation of v(h). Hence, ũ(h)

g = w̃(h)
g = ṽ(h)

g , for all g ∈ N(h).

Case 4: h = H. By assumption u(H) ∼RO v(H) and by construction w(H) is a permutation of
v(H). Hence, ũ(H)

g = w̃(H)
g = ṽ(H)

g , for all g ∈ N(H).

To summarise, we have u(h) ≥RO w(h) ≥RO v(h), for all h = 1, 2, . . . , H − 1, with w(h) >RO

v(h), for at least one h, and u(H) ∼RO w(H) ∼RO v(H). Therefore u ≥SRO w >SRO v. If u = w,
then distribution u results from distribution v by means of a single favourable permutation
and the proof is complete. If u 6= w, then we apply the above reasoning to the distributions
û and ŵ obtained by deleting all indices h and g such that uhg = whg . It is possible that no
such indices exist in which case û = u and ŵ = w. By successive permutations of the kind
described above, we finally obtain a distribution z such that uin(i) = uis = vjt = zin(i). Since
i < j, we need at most (j − i) favourable permutations in order to obtain z starting from
v. This gives a maximum of (H − 1) permutations in the case where i = 1 and j = H with
the consequence that u and z differ in at most (ñ(H) − 1) elements. Repeating the above
operation, we obtain distribution u from distribution v by means of a finite sequence of no
more than ñ(H) (H − 1) favourable permutations.

Proof of Lemma 5.1. See Moyes (2011a, Remark 3.2).

Proof of Lemma 5.2. Suppose that situation s∗ is obtained from situation s◦ by means of a
between-type progressive income transfer as it is represented in Figure 5.2. For social welfare
to increase as the result, we must have

(8.35)
∑
g 6=i,j

U(x◦g, a◦g) + U(v, h) + U(w, k) =
∑
g 6=i,j

U(x◦g, a◦g) + U(u, h) + U(t, k).
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Making use of the decomposition of a between-type progressive income transfer depicted in
Figure 5.3, this is equivalent to

(8.36) U(v, h) + U(u, k) + U(w, k) = U(u, h) + U(u, k) + U(t, k).

Invoking condition C1, we have

(8.37) U(v, h) + U(u, k) + U(w, k) = U(u, h) + U(v, k) + U(w, k),

while condition C2 guarantees that

(8.38) U(u, h) + U(v, k) + U(w, k) = U(u, h) + U(u, k) + U(t, k).

Combining the inequalities (8.37) and (8.38), we obtain (8.36), which proves that conditions
C1 and C2 are sufficient for social welfare to increase as the result of a between-type progressive
income transfer.

Proof of Lemma 5.3. It is a direct consequence of the additive separability of the ordered
poverty gap (see equation (5.8)).

Proof of Proposition 5.1. This follows from standard results in the literature (see, e.g.,
Hardy et al. (1934), Berge (1963), Marshall and Olkin (1979)).

Before we proceed to the proof of Proposition 5.2, we need introduce some additional piece of
notation. First, given a situation s ∈ Sn, we let

(8.39) M1 (s) := {vj ∈ D | ∃ i : xi = vj }

and we label the distinct elements in M1 (s) so that v1 < v2 < · · · < vm1(s), where m1(s) :=
#M1 (s). Similarly, given s∗, s◦ ∈ Sn, we let

(8.40) M1 (s∗, s◦) := {vj ∈ D | ∃ i : x∗i = vj or x◦i = vj } ,

where by convention the elements in M1 (s∗, s◦) are labelled in such a way that v1 < v2 <

· · · < vm1(s∗,s◦), with m1 (s∗, s◦) := #M1 (s∗, s◦). Given the situation s ≡ (x; a) ∈ Sn, we find
convenient to let

(8.41) P(y |h) := f2(h)P (y |h),

for all y ∈ D and all h = 1, 2, . . . , H. Thus, P(y |h) is the (average) conditional poverty gap of
the group of individuals with health status h multiplied by the proportion of these individuals
in the whole population. For further reference, we note that (8.41) can be rewritten as

(8.42) P(y |h) = f2(h)
∫ y

v
F (t |h) dt =

∫ y

v

∫ t

v
f(ξ, h) dξ dt.

On the other hand, we have

(8.43)
∫ y

v
F (t, h) dt =

h∑
k=1

∫ y

v

∫ t

v
f(ξ, k) dξ dt, ∀ y ∈ D , ∀ h = 1, 2, . . . , H.
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Combining (8.42) and (8.43), we get

(8.44) P(y |h) =
∫ y

v
F (t, h) dt−

∫ y

v
F (t, h− 1) dt, ∀ y ∈ D , ∀ h = 1, 2, . . . , H,

where F (y, 0) := 0, for all y ∈ D . Summing over h = 1, 2, . . . , H, we obtain

(8.45)
∫ y

v
F (t, h) dt =

h∑
k=1

P(y | k), ∀ y ∈ D , ∀ h = 1, 2, . . . , H.

Clearly, P(y |h) inherits all the properties of P (y |h). In particular: P(y |h) = 0, for all
y 5 min{xi} and all h = 1, 2, . . . , H, P(y |h) is an increasing and convex piecewise linear
function over [min {xi} ,max {xi}] with kinks occurring for values of y in M1 (s), and

(8.46) P(y |h) = f2(h) [y − µ(x(h))] , ∀ y = max{xi}, ∀ h = 1, 2, . . . , H.

Differentiating (8.42), we obtain the right and left derivatives of P(y |h) with respect to
income, denoted respectively as

Py(y |h)+ = f2(h)F (y |h) = n2(h)
n

q(y |h)
n2(h) = q(y |h)

n
and(8.47a)

Py(y |h)− = f2(h)F−(y |h) = n2(h)
n

q−(y |h)
n2(h) = q−(y |h)

n
,(8.47b)

where q(y |h) = # {i |xi 5 y and ai = h} and q−(y |h) = # {i |xi < y and ai = h}. Using
(8.47a) and (8.47b), we define the second derivative

Pyy(y |h) = Py(y |h)+ −Py(y |h)− = f2(h) [F (y |h)− F−(y |h)]

= f2(h) f(y |h) = f(y, h) = n(y, h)
n

.

(8.48)

We note that the first derivatives of P(y |h) are related to the conditional distribution function
of income, while the second derivative is equal to the joint density function. Given two
situations s∗, s◦ ∈ Sn, we let v− := min {x∗i , x◦i } and v+ := max {x∗i , x◦i } to simplify notation.

Proof of Proposition 5.2. That condition (b) is sufficient for s∗ to ordered poverty gap
dominate s◦ follows from Lemma 5.3 and the fact that the classes of utility functions that are
respectively submodular and concave in income for every type are subsets of the class U2. The
proof of the converse statement is rather lengthy and it will involve four steps. In the first
step, assuming that s∗ ordered poverty gap dominates s◦, we follow Bourguignon (1989) and
we derive a function Ψ(y |h) that will play a crucial role in our separation result. This function
is used in the second step to construct pseudo conditional poverty curves with the property
that (i) they are nowhere above the conditional poverty curves of s◦ and (ii) they generate a
pseudo joint distribution function that lies nowhere below the joint distribution function of s∗.
However, the corresponding densities may well be negative for some (y, h) ∈ D × A , which
implies that these conditional poverty curves can be neither increasing nor convex on the
domain D . In the third step, starting with the function Ψ(y |h), we construct two situations
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s̃ and ŝ‡, where the first one will play the role of the phantom situation, while the second
will be our separating situation. Finally, we verify in the fourth step that by augmenting the
initial situations with the phantom situation it is possible to obtain the desired separation. To
some extent, the second step of the proof provides an indication about the reasons why it is
impossible to separate the dominating situation from the dominated one when the population
is fixed.

Step 1. Suppose that statement (a) holds or equivalently that

(8.49)
H∑
h=1

[P◦(z(h) |h)−P∗(z(h) |h)] = 0, ∀ z(1) = z(2) = · · · = z(H).

Consider the function Ψ : D × {0, 1, 2, . . . , H} defined recursively by Ψ(y | 0) := 0, for all
y ∈ D , and

(8.50) Ψ(y |h) := min {P◦(th |h)−P∗(th |h) + Ψ(th |h− 1) | th = y} ,

for all y ∈ D and all h = 1, 2, . . . , H. By construction, Ψ(y |h) is a piecewise linear function
where kinks occur possibly for values of y in M1 (s∗, s◦). We indicate respectively by

Ψy(y |h)+ = : φ2(h)ψ(y |h) and(8.51a)

Ψy(y |h)− =: φ2(h)ψ(y |h)−(8.51b)

the right and left derivatives of Ψ(y |h) with respect to income, and we note that they are
rational numbers. The second derivative is

Ψyy(y |h) = Ψy(y |h)+ −Ψy(y |h)− := φ2(h)
[
ψ(y |h)− ψ(y |h)−

]
= φ2(h)φ(y |h) = φ(y, h),

(8.52)

and it is also a rational number being the difference of two rational numbers.

Claim 1. The function Ψ has the following properties:

A1 Ψ(y |h) = 0, ∀ y ∈ D , ∀ h = 1, 2, . . . , H;

A2 Ψ(y |h) is non-decreasing in y, ∀ y ∈ D , ∀ h = 1, 2, . . . , H;

A3 Ψ(y |h)−Ψ(y |h− 1) 5 P◦(y |h)−P∗(y |h), ∀ y ∈ D , ∀ h = 1, 2, . . . , H;

A4 Ψ(y |h) 5 ∑h
k=1 [P◦(y | k)−P∗(y | k)] , ∀ y ∈ D , ∀ h = 1, 2, . . . , H;

A5 Ψ(v |h)−Ψ(v |h− 1) = P◦(v |h)−P∗(v |h), ∀ h = 1, 2, . . . , H;

A6 Ψ(v |h) = ∑h
k=1 [P◦(v | k)−P∗(v | k)] , ∀ h = 1, 2, . . . , H;

A7 Ψ(y |H) = 0, ∀ y ∈ D .
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Proof.

A1. Given h ∈ {1, 2, . . . , H} and y ∈ D , we denote by th(y) the smallest th = y such that

(8.53) P◦(th |h)−P∗(th |h) + Ψ(th |h− 1) 5 P◦(vh |h)−P∗(vh |h) + Ψ(vh |h− 1),

for all vh = y.

When h = 1, the result follows from choosing z = (y, v, v, . . . , v), where y = v. Then,
condition (8.49) implies that

(8.54) P◦(y | 1)−P∗(y | 1) = 0, ∀ y = v,

which implies that

(8.55) Ψ(y | 1) = P◦(t1(y) | 1)−P∗(t1(y) | 1) = 0,

for all y ∈ D .

When h = 2, we choose z = (t1(y), y, v, . . . , v), where t1(y) = y = v, and it follows from
condition (8.49) that

(8.56) P◦(y | 2)−P∗(y | 2) + P◦(t1(y) | 1)−P∗(t1(y) | 1) = 0, ∀ y = v,

which implies in turn that

(8.57) Ψ(y | 2) = P◦(t2(y) | 2)−P∗(t2(y) | 2) + P◦(t1 ◦ t2(y) | 1)−P∗(t1 ◦ t2(y) | 1) = 0,

for all y ∈ D .

In the general case where h > 2, choose

(8.58) z = (t1 ◦ t2 ◦ · · · ◦ th−1 ◦ th(y), t2 ◦ · · · ◦ th−1 ◦ th(y), . . . , th−1(y), y, v, . . . , v),

and note that

(8.59) t1 ◦ t2 ◦ · · · ◦ th−1 ◦ th(y) = t2 ◦ · · · ◦ th−1 ◦ th(y) = . . . = th−1(y) = y.

Then, condition (8.49) implies that

P◦(y |h)−P∗(y |h) +

P◦(th−1(y) |h− 1)−P∗(th−1(y) |h− 1) +

...

P◦(t2 ◦ · · · ◦ th−1 ◦ th(y) | 2)−P∗(t2 ◦ · · · ◦ th−1 ◦ th(y) | 2) +

P◦(t1 ◦ t2 ◦ · · · ◦ th−1 ◦ th(y) | 1)−P∗(t1 ◦ t2 ◦ · · · ◦ th−1 ◦ th(y) | 1) = 0,

(8.60)
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for all y = v. This implies in turn that

Ψ(y |h) =

P◦(th(y) |h)−P∗(th(y) |h) +

P◦(th−1 ◦ th(y) |h− 1)−P∗(th−1 ◦ th(y) |h− 1) +

...

P◦(t2 ◦ t3 ◦ · · · ◦ th−1 ◦ th(y) | 2)−P∗(t2 ◦ t3 ◦ · · · ◦ th−1 ◦ th(y) | 2) +

P◦(t1 ◦ t2 ◦ t3 ◦ · · · ◦ th−1 ◦ th(y) | 1)−P∗(t1 ◦ t2 ◦ t3 ◦ · · · ◦ th−1 ◦ th(y) | 1) = 0,

(8.61)

for all y = v.

A2. Consider a function Ξ : R×{1, 2, . . . , H} → R. By the definition of the min function, we
have

(8.62) min {Ξ(t, h) | t = y◦} 5 min {Ξ(t, h) | t = y∗} , ∀ y∗ > y◦, ∀ h = 1, 2, . . . , H.

The result follows by choosing Ξ(t, h) = P◦(t |h)−P∗(t |h) + Ψ(t |h− 1).

A3. By definition of Ψ(y |h), we have

(8.63) Ψ(y |h) 5 P◦(th |h)−P∗(th |h)+Ψ(th |h−1), ∀ th = y, ∀ y ∈ D , ∀ h = 1, 2, . . . , H.

In particular, for th = y, we get

(8.64) Ψ(y |h) 5 P◦(y |h)−P∗(y |h) + Ψ(y |h− 1), ∀ y ∈ D , ∀ h = 1, 2, . . . , H,

and A3 follows.

A4. This result follows from A3 by summation from 1 to h, where h = 1, 2, . . . , H.

A5. By the definition of Ψ(y |h), we obtain

(8.65) Ψ(v |h) = P◦(v |h)−P∗(v |h) + Ψ(v |h− 1), ∀ h = 1, 2, . . . , H,

when y = v, which is precisely A5.

A6. This result follows from A5 by summation from 1 to h, where h = 1, 2, . . . , H.

A7. It follows from A4 that

(8.66) Ψ(v |H) =
H∑
h=1

[P◦(v |h)−P∗(v |h)] .
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Making use of (8.46) and upon substitution into (8.66), we obtain

Ψ(v |H) =
H∑
h=1

f ◦2 (h)
[
v − µ(x◦(h))

]
−

H∑
h=1

f ∗2 (h)
[
v − µ(x∗(h))

]

=
(
v −

H∑
h=1

f ◦2 (h)µ(x◦(h))
)
−
(
v −

H∑
h=1

f ∗2 (h)µ(x∗(h))
)

=
H∑
h=1

f ∗2 (h)µ (x∗(h))−
H∑
h=1

f ◦2 (h)µ (x◦(h))

= µ (x∗)− µ (x◦) = 0.

(8.67)

We know from A2 that Ψ(y |H) is non-decreasing in y. This, in conjunction with (8.67)
implies that Ψ(y |H) = 0, for all y ∈ D .

Step 2. Now define

(8.68) P‡(y |h) := P∗(y |h) +
[
Ψ(y |h)−Ψ(y |h− 1)

]
, ∀ y ∈ D , ∀ h = 1, 2, . . . , H.

Then, we have:

Claim 2. The function P‡(y |h) has the following properties:

B1 P‡(y |h) = 0, ∀ y 5 v−, ∀ h = 1, 2, . . . , H;

B2 P‡(y |h) 5 P◦(y |h), ∀ y < v+, ∀ h = 1, 2, . . . , H;

B3 P‡(y |h) = P◦(y |h), ∀ y = v+, ∀ h = 1, 2, . . . , H;

B4 F ‡(y, h) = F ∗(y, h), ∀ y ∈ D , ∀ h = 1, 2, . . . , H − 1; and

B5 F ‡ (y,H) = F ∗ (y,H) , ∀ y ∈ D .

Proof.

B1. This follows from the fact that P◦(y |h) = 0 and Ψ(y |h) = 0, for all y 5 v− and all
h = 1, 2, . . . , H.

B2 and B3. Using (8.50) and invoking respectively A3 and A5, we get

P‡(y |h) 5 P∗(y |h) +
[
P◦(y |h)−P∗(y |h)

]
= P◦(y |h), ∀ y ∈ D , and(8.69a)

P‡(y |h) = P∗(y |h) +
[
P◦(y |h)−P∗(y |h)

]
= P◦(y |h), ∀ y = v+,(8.69b)

for all h = 1, 2, . . . , H.

B4 and B5. Taking the right derivative of (8.43), we get

(8.70) F (y, h) =
h∑
k=1

Py(y | k)+, ∀ y ∈ D , ∀ h = 1, 2, . . . , H.
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Making use of (8.68), we obtain

(8.71) F ‡(y, h)− F ∗(y, h) =
h∑
k=1

[
P∗

y (y | k)+ +
(
Ψy(y | k)+ −Ψy(y | k − 1)+

)
−P∗

y (y | k)+

]
which simplifies to

(8.72) F ‡(y, h)− F ∗(y, h) =
h∑
k=1

[
Ψy(y | k)+ −Ψy(y | k − 1)+

]
= Ψy(y |h)+,

for all y ∈ D and all h = 1, 2, . . . , H. Invoking A2 we deduce that

(8.73) F ‡(y, h) = F ∗(y, h), ∀ y ∈ D , ∀ h = 1, 2, . . . , H.

We know from A7 that Ψ(y |H) = 0, for all y ∈ D . This implies that Ψy(y |H)+ = 0, for all
y ∈ D , and we therefore conclude that

(8.74) F ‡(y,H) = F ∗(y,H), ∀ y ∈ D

which makes the proof complete.

To sum up, starting with P∗(y |h), P◦(y |h) and the assumption that P (z; (x∗; a∗)) 5

P (z; (x◦; a◦)), for all z such that z(h) is non-increasing in h, we have constructed P‡(y |h)
verifying properties B1 to B5. However, nothing guarantees that P‡

yy(y |h) =: f ‡(y |h) is a
density function, i.e:

f ‡(y, h) = f ‡2(h)
[
F ‡(y |h)− F ‡−(y |h)

]
= 0, ∀ y ∈ D , ∀ h = 1, 2, . . . , H; and(8.75)

H∑
h=1

∫ v

v
f ‡(y, h) dy =

H∑
h=1

∫ v

v
f ‡2(h)

[
F ‡(y |h)− F ‡−(y |h)

]
dy = 1.(8.76)

This implies in particular that P‡(y |h) may fail to be increasing and convex over the domain
[v−, v+]. More importantly, f ‡(y, h) cannot be considered a density function and no situation
s‡ can be associated with it. Therefore, we find convenient to think of P‡(y |h) and F ‡(y, h)
as a pseudo conditional poverty curve and a pseudo joint distribution function, respectively.

Step 3. Differentiating (8.68) two times with respect to income, we obtain

(8.77) f ‡(y, h) = f ∗(y, h) +
[
φ(y, h)− φ(y, h− 1)

]
, ∀ y ∈ D , ∀ h = 1, 2, . . . , H,

where by definition f ∗(y, h) and φ(y, h) are rational numbers. By assumption, the situations
s∗ and s◦ have the same dimension equal to n, and by definition f ∗(y, h) = n∗(y, h)/n, for all
y ∈ D and all h = 1, 2, . . . , H. Then, it is always possible to find integers n‡(y, h) and r(y, h)
such that

(8.78) n‡(y, h)
n

= n∗(y, h)
n

+
[
r(y, h)
n
− r(y, h− 1)

n

]
,

which implies in turn that

(8.79) n‡(y, h) = n∗(y, h) + [r(y, h)− r(y, h− 1)] ,
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for all y ∈ D and all h = 1, 2, . . . , H. Given any h ∈ {1, 2, . . . , H}, there are two possibilities:
either n‡(y, h) = 0, for all y ∈ D , or n‡(y, h) < 0, for some y ∈ D .

Consider the function ñ : D × {1, 2, . . . , H} → N defined by

(8.80) ñ(y, h) := max
{

0,−n‡(y, h)
}
= 0, ∀ y ∈ D , ∀ h = 1, 2, . . . , H.

Then define

ñ∗(y, h) := n∗(y, h) + ñ(y, h),(8.81a)

ñ◦(y, h) := n◦(y, h) + ñ(y, h),(8.81b)

n̂‡(y, h) := n∗(y, h) +
[
r(y, h)− r(y, h− 1)

]
+ ñ(y, h),(8.81c)

for all y ∈ D and h = 1, 2, . . . , H. We note that n∗(y, h), n◦(y, h), r(y, h), and ñ(y, h) are all
integers. Upon summation, we have

(8.82)
H∑
h=1

∑
y∈M1(s∗,s◦)

ñ∗(y, h) =
H∑
h=1

∑
y∈M1(s∗,s◦)

n∗(y, h) +
H∑
h=1

∑
y∈M1(s∗,s◦)

ñ(y, h) = n+ ñ,

where ñ := ∑H
h=1

∑
v∈M1(s∗,s◦) ñ(y, h). Similarly, we have

(8.83)
H∑
h=1

∑
y∈M1(s◦,s◦)

ñ◦(y, h) =
H∑
h=1

∑
y∈M1(s◦,s◦)

n◦(y, h) +
H∑
h=1

∑
y∈M1(s◦,s◦)

ñ(y, h) = n+ ñ.

Now, we deduce from (8.81c), (8.82), and (8.83) that a necessary and sufficient condition
for

(8.84)
H∑
h=1

∑
y∈M1(s◦,s◦)

n̂‡(y, h) = n+ ñ,

is that

(8.85)
H∑
h=1

∑
y∈M1(s◦,s◦)

[
r(y, h)− r(y, h− 1)

]
= 0.

This is equivalent to

(8.86)
H∑
h=1

∑
y∈M1(s◦,s◦)

[
Ψyy(y |h)−Ψyy(y |h− 1)

]
=

∑
y∈M1(s◦,s◦)

Ψyy(y |H) = 0,

where we have made use of condition A7 according to which Ψ(y |H) = 0, for all y ∈ D . The
density functions of s̃∗ := (s∗; s̃), s̃◦ := (s◦; s̃), and ŝ‡ are respectively given by

f̃ ∗(y, h) = (1− λ)f ∗(y, h) + λf̃(y, h),(8.87a)

f̃ ◦(y, h) = (1− λ)f ◦(y, h) + λf̃(y, h), and(8.87b)

f̂ ‡(y, h) = (1− λ)
[
f ∗(y, h) + (φ(y, h)− φ(y, h− 1))

]
+ λf̃(y, h),(8.87c)
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where

f̃(y, h) is the density function of the phantom distribution s̃ ∈ Sq,(8.88a)

λ = ñ

n+ ñ
, and(8.88b)

q = ñ.(8.88c)

Step 4. It remains to check that conditions B2, B3, B4 and B5 hold with

(i) P̂‡(y |h) and P̃◦(y |h) in place of P‡(y |h) and P◦(y |h), respectively, and

(ii) F̂ ‡(y, h) and F̃ ∗(y, h) in place of F ‡(y, h) and F ∗(y, h), respectively.

Using (8.42), we obtain

P̃◦(y |h) =
∫ y

v

∫ t

v

[
(1− λ)f ◦(ξ, h) + λf̃(ξ, h)

]
dξ dt, and(8.89a)

P̂‡(y |h) =
∫ y

v

∫ t

v

[
(1− λ) (f ∗(ξ, h) + (φ(ξ, h)− φ(ξ, h− 1))) + λf̃(ξ, h)

]
dξ dt,(8.89b)

for all y ∈ D and h = 1, 2, . . . , H. Then, we have

P̃◦(y |h)− P̂‡(y |h) =∫ y

v

∫ t

v
(1− λ) [f ◦(ξ, h)− f ∗(ξ, h)] dξ dt−

∫ y

v

∫ t

v
(1− λ) [φ(ξ, h)− φ(ξ, h− 1)] dξ dt =

(1− λ)
[(

P◦(y |h)−P‡(y |h)
)
−
(
Ψ(y |h)−Ψ(y |h− 1)

)]
,

(8.90)

for all y ∈ D and h = 1, 2, . . . , H. Invoking A3 and A5, we conclude that

P̃◦(y |h) = P̂‡(y |h), ∀ y ∈ D , ∀ h = 1, 2, . . . , H − 1; and(8.91a)

P̃◦(y |H) = P̂‡(y |H), ∀ y ∈ D .(8.91b)

Furthermore, we have

F̃ ∗(y, h) = (1− λ)F ∗(y, h) + λF ◦(y, h), and(8.92a)

F̂ ‡(y, h) = (1− λ)F ∗(y, h) + λF ◦(y, h) + (1− λ)
h∑
k=1

∫ y

v
[φ(t, k)− φ(t, k − 1)] dt,(8.92b)

for all y ∈ D and h = 1, 2, . . . , H. Making use of (8.52), we get

(8.93)
h∑
k=1

∫ y

v
[φ(t, k)− φ(t, k − 1)] dt =

h∑
k=1

[Ψy(y | k)−Ψy(y | k − 1)] = Ψy(y |h),

for all y ∈ D and h = 1, 2, . . . , H. Invoking respectively A2 and A7, we deduce that

F̂ ‡(y, h) = F̃ ∗(y, h), ∀ y ∈ D , ∀ h = 1, 2, . . . , H − 1; and(8.94a)

F̂ ‡(y,H) = F̃ ∗(y,H), ∀ y ∈ D .(8.94b)

Therefore, we have identified a phantom situation s̃ ∈ Sq and a separating situation ŝ‡ ∈
Sn ×Sq such that s̃∗ ≥HP ŝ‡ ≥CPG s̃◦, where s̃∗ := (s∗; s̃) and s̃◦ := (s◦; s̃).
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