

Inflation targeting in a learning economy: An ABM perspective

Isabelle SALLE & Murat YILDIZOGLU & Marc-Alexandre SENEGAS

GREThA, CNRS, UMR 5113 Université de Bordeaux

Cahiers du GREThA n° 2012-15 May

GRETHA UMR CNRS 5113

Université Montesquieu Bordeaux IV Avenue Léon Duguit - 33608 PESSAC - FRANCE Tel : +33 (0)5.56.84.25.75 - Fax : +33 (0)5.56.84.86.47 - www.gretha.fr

Ciblage de l'inflation dans une économie d'apprentissage : une perspective ABM

Résumé

La présente contribution analyse les performances d'un régime de ciblage de l'inflation dans une économie, dont le fonctionnement est caractérisé par l'apprentissage des agents qui la peuplent. Ce fonctionnement est traduit en termes d'une modélisation à base d'agents (ABM). Dans un modèle dont la structure reste proche de celle du cadre d'analyse Nouveau Keynésien, nous représentons des agents individuels dont les comportements sont guidés par une rationalité procédurale, au sens de Simon (1971). Ces comportements se traduisent par l'adoption de règles simples – dites aussi routines, ou heuristiques, plutôt que par la résolution de programmes d'optimisation intertemporelle, nécessitant le recours à l'hypothèse d'anticipations rationnelles. Un processus d'apprentissage perpétuel permet de faire évoluer et d'adapter continuellement ces règles de comportement. Les déviations vis-à-vis de l'équilibre en anticipations rationnelles du modèle émergent de ces comportements d'apprentissage, de manière endogène. Dans ce modèle, la banque centrale met en œuvre un régime de ciblage de l'inflation via une règle de politique monétaire. Notre objectif est d'analyser les interactions entre les mécanismes d'apprentissage, qui opèrent au niveau individuel, et les caractéristiques et les performances macroéconomiques du régime de ciblage de l'inflation. Nous montrons que la crédibilité des annonces de la banque centrale à propos de ses objectifs joue un rôle primordial dans la stabilisation macroéconomique, et nous mettons en évidence le rôle d'ancrage des anticipations d'inflation privées joué par la cible. Nous pointons aussi l'existence d'un coût potentiel en termes de bien-être à la divulgation d'informations publiques imparfaites, et nous contribuons par ailleurs au débat concernant les règles de politique monétaire optimales dans un contexte d'incertitude.

Mots-clés : Ciblage de l'inflation ; modèle à base d'agents ; communication de la banque centrale ; anticipations ; apprentissage

Inflation targeting in a learning economy: An ABM perspective

Abstract

This paper investigates the performances of an inflation targeting regime in a learning economy, whose functioning is tackled through an Agent-Based Model (ABM). While the structure of our ABM has common features with that of the New Keynesian canonical modelling framework, we model individual agents' forms of behaviour under procedural rationality in the sense of Simon (1971). Instead of assuming that they fully optimize on an intertemporal basis beforehand, and make use of rational expectations in that respect, agents are supposed to adopt economic forms of behaviour that are guided by simple rules of thumb -- or heuristics -- while a continuous learning process governs the evolution of those simple rules. Departures from the rational expectations equilibrium endogenously arise from those learning rules. Subsequently, the central bank implements an inflation targeting regime via a monetary policy rule. Our aim is to analyse the interplay between the learning mechanisms operating at the individual level, and the features and performances of the inflation targeting regime. In such a setting, we show the primary importance of the credibility of central bank announcements regarding macroeconomic stabilization outcomes, as well as the beneficial role played by the inflation target as an anchoring device for private inflation expectations. We also demonstrate the potential welfare cost of imperfect public information, and contribute to the debate on optimal monetary policy rule under uncertainty

Keywords: inflation targeting; agent-based model; central bank communication; expectations; learning

JEL: E52; E58; C63

Reference to this paper: SALLE Isabelle, YILDIZOGLU Murat, SENEGAS Marc-Alexandre (2012) Inflation targeting in a learning economy: An ABM perspective, *Cahiers du GREThA*, n°2012-15. http://ideas.repec.org/p/grt/wpegrt/2012-15.html.

1 Introduction

Ever since the Reserve Bank of New Zealand Act of 1989 introduced inflation targeting (hereafter IT) as on official framework for the conduct of monetary policy, IT has never ceased to be employed throughout the world, and ever-increased numbers of countries have become inflation targeters during the past twenty years. That development has raised a great deal of interest in that monetary regime, both from an empirical and theoretical point of view.

The present paper aims at contributing to the existing theoretical literature, which, so far, has mainly emphasized two different issues concerning IT regimes properties. First, several studies have investigated how the design of IT could be cast in terms of a specific policy rule that the monetary authorities would follow (and/or commit themselves to). That strand of the literature has notably distinguished explicit instrumental rules, and optimal targeting rules. Those rules are two polar ways of implementing IT and, concerning optimal rules, the literature has notably assessed the properties of inflation forecast targeting rules (Svensson (1999), Svensson & Woodford (2004)). Another strand of the literature has tried to identify the channels through which the IT regime could affect the course of the economy, and to determine which features of the economic environment may be key in promoting that impact. The role played by the degree of transparency of the central bank (CB thereafter) concerning the conduct of monetary policy has been particularly highlighted in this respect (Walsh (2006, 2010)).

Those two lines of research both highlight the role of expectations in the functioning of an IT regime, and both show the importance of a declared commitment by the monetary authorities on the course of their future policy decision, which can anchor these expectations. As such, they perfectly fit into the new paradigm for monetary policy conduct that has emerged over the past fifteen years. At the heart of that paradigm stands the idea that expectations are the primary concern of CBs, and constitute a key channel for the transmission mechanism. Policy decisions should be transparent, so as to make them predictable and to help improve the effectiveness of monetary policy. In such a context, the CB acts as a manager of private expectations (Woodford (2005))). In line with those different elements, it is by not really surprising that the New Keynesian canonical macroeconomic model (NK model henceforth) has become the reference framework for analysing the design of monetary policy rules under IT, as well as the macroeconomic properties of that monetary regime (see Giannoni (2004) for a standard reference). Core features of the NK model include a forward-looking optimizing behaviour on

the part of the private sector and rational expectations (RE), in a dynamic stochastic general equilibrium (DSGE) model with staggered price setting (see Woodford (2003)) for the reference masterpiece).

Yet, that theoretical framework does not appear to be fully adequate for addressing transparency and/or communication issues in the analysis of IT regimes. As underlined by Svensson (2009, p. 11), "in a hypothetical world of a fully informed and rational private sector in a stationary environment with a stationary monetary policy, symmetric information between the CB and the rest of the economy, and rational expectations, there is no specific role for CB communication"¹. As a consequence, deviations from the full RE setting (*i.e.* rational expectation formation based on a complete information set) have been contemplated in the literature, while leaving unchanged, in most of the cases, the other underlying ingredients of the NK model. Two modelling routes have been followed in that respect.

The first line of research has reconsidered the common knowledge hypothesis that underlies the computation of the RE equilibrium in the standard canonical NK model. That line has been initially applied by Morris & Shin (2002) to the analysis of monetary policy transparency in the context of global games and high order beliefs. Acknowledging an imperfect knowledge of monetary policy actions within the private sector provides a natural way to analyse the features of the communication policy of the CB and the optimal degree of transparency in a context of public and private noisy signals (see Cornand & Heinemann (2008) for such an analysis using a coordination game, Cornand & Baeriswyl (2010), Walsh (2006, 2010) for adapting the NK model to an imperfect knowledge environment; see Demertzis & Viegi (2009) for addressing the role of the inflation target as a focal point for expectations).

A second line of research replaces the RE setting by an adaptive learning environment: the agents try to learn about the RE (reduced form) equilibrium relationships through a recursive updating of their expectations, on the basis of the observations they collect on inflation and output gap over time. Based on the new impetus given to the inclusion of learning dynamics in macroeconomics by Evans & Honkapohja (2001), that line of research has notably been applied to the case of IT Orphanides & Williams (2005, 2007). Those authors use a NK framework in a context, in which the private agents must learn about the underlying economic model. The announcement of the inflation target affects the learning dynamics, and, in turn, the reaction of the monetary authorities to the economic environment, which favours the convergence to the RE equilibrium. In the same perspective, Eusepi & Preston (2010) consider an adaptive

see, also, Blinder et al. (2008).

learning process by private agents, based on a VAR forecasting model and interplaying with the other specified relationships stemming from a microfounded NK model. In such a setting, they demonstrate the need of the CB's communication - including the announcement of an explicit inflation target - to prevent the occurrence of self-fulfilling expectational dynamics.

The objective of our paper is to go one, and more radical, step forward in the investigation of IT properties under learning, by adopting an alternative approach to model that learning environment. We address the case of a learning economy, by which we mean not only that the individual agents depart from the RE benchmark when forming their expectations but, also, and more fundamentally, that their decisions themselves rest upon a learning mechanism, and thus deviate from the optimizing behavioural framework assumption beforehand. In other terms, we place ourselves in a context, in which individual agents are endowed with bounded rationality and are, as a consequence, engaged in a perpetual learning process, using regularly updated heuristics (or rules of thumb), rather than optimally derived rules to take decisions.

Bounded rationality and its modelling have still a long history in economics (see the pioneering work by Simon (1971)), but it has been recently put to the fore by authors that underscore the limitations of the NK framework (and more generally the DSGE methodology) to address macroeconomic issues and, particularly, those regarding the impact of monetary policy (Colander et al. (2008), De Grauwe (2011), Delli Gatti et al. (2010)). One of the most challenging features concerns the cognitive abilities that the agents are supposed to be endowed with (De Grauwe (2011)): in the NK model, agents know and perfectly understand the underlying model of the economy – its structure as well as the values of its parameters. That feature, coupled with the RE assumption, allows them to use the model structure to make economic decisions and forecast the evolution of the relevant variables for these decisions². Those information assumptions are, to say the least, very restrictive and implausible. In general, individuals do not have the ability to process the complexity of the information they receive, and to compute an optimal action (see Simon (1971)). They rather use simple rules, namely *heuristics*, to guide their behaviour, in an adaptive way, towards the achievement of their objectives.

Those aspects have been explicitly introduced by Brazier et al. (2008), Canzian (2009)

 $^{^2}$ In that respect, the introduction of adaptive learning to substitute for the RE assumption may be considered as a first step to model a kind of bounded rationality. However, that introduction, at least in the macroeconomic literature, comes as a relatively small deviation from the RE hypothesis, as agents are supposed to know the features of the economic model, even if they have to learn about the parameters of the equations that make up that model. For a learning process based on a misspecified representation of that model, see Evans (2005). Furthermore, in this literature, learning usually operates at the aggregate level, on the reduced form of the model.

and De Grauwe (2011), through simple evolutionary forecasting heuristic rules into different macroeconomic frameworks: one overlapping-generation model (Brazier et al. (2008)), a simple aggregate model without any microfundations (Canzian (2009)) and a DSGE model (De Grauwe (2011)). All those contributions provide interesting insights about the way an explicit inflation target can overcome the additional macroeconomic volatility caused by a strong departure from the RE setting. They restrict, however, the impact of bounded rationality to operate at the level of the expectation formation process, while keeping unchanged, in most of the cases, the other decision rules that are left consistent with the substantive rationality approach.

In this paper, we aim at overcoming this methodological hiatus by explicitly modelling the learning economy as a complex adaptive system whose functioning and dynamics are primarily based on the adoption by boundedly rational households and firms of *individual, learning-based*, *"heuristic" rules of behaviour.* Given those modelling assumptions, the DSGE framework and tools have to be replaced by an alternative theoretical apparatus that could deal with the interaction of individual decisions and aggregation of heterogeneous behaviours in a flexible way. We cannot suppose that those aspects would be (implicitly or explicitly) solved in a market clearing, equilibrium situation with RE, as we cannot assume *a priori* that such a situation would emerge from the functioning of the economy we specify.

In our case, the change in the analytical framework is achieved through the building of an agent-based model (ABM)³. Basically, an ABM consists of a simulated artificial economy, in which heterogeneous agents repeatedly interact according to heuristics, i.e. non-optimized, rules of behaviour (Tesfatsion (2006)), that may be updated through specified learning process ⁴. Due to the bottom-up approach that underlies its construction, ABMs may constitute a flexible tool to deal with heterogeneity and allows, on that basis, for the emergence of macroeconomic dynamics, or features that depart from the RE equilibrium paths that are usually envisioned in the NK model. However, as stressed by De Grauwe (2011), in order to avoid the "everything becomes possible" criticism, that flexibility in the modelling of heuristics has to be framed by disciplining devices for the design of rules of decision. That is why, in our case, we choose to keep the basic structure of our model very close to that of the NK model. That proximity opens, in turn, the way for a natural robustness exercise concerning the results that have been obtained within the NK modelling framework on the properties of IT under learning. We also

³ See the contributions collected in Tesfatsion & Judd (2006). ABM are widely spread in other scientific fields than social sciences, such as biology or climate change studies. The use of ABM to analyse macroeconomic issues is rather recent. Contributions include Raberto et al. (2008), Oeffner (2008), Canzian (2009) or Lengnick (2011). To our knowledge, none of them is explicitly related to the analysis of IT.

⁴ See Brenner (2006) and Kirman (2011) for a statement of learning in ABMs.

retain a simple evolutionary mechanism that guides the social learning process of agents (see Sargent (1993), Arifovic (1995)).

In that respect, the objective of our paper is twofold. First, it aims at providing an original, theoretical framework of a learning economy whose functioning is rooted in the boundedly rational behaviour of individual agents. Second, it seeks to address the impact of an IT regime on the working of this economy. In particular, we try to identify how the anchoring mechanism that the inflation target may provide under this regime, does manifest itself in this economy, and to identify the role that the transparency and credibility of the CB do play in that respect.

Our main results are presented as follows. First, we show the primary role that the credibility of the inflation target plays in the achievement of the two monetary policy objectives (whether with respect to inflation or unemployment). When the CB's inflation target is perfectly credible, the dynamics of the economy, that is governed by the learning process of the agents, displays the strongest convergence with respect to those objectives. Interestingly, the so-called Taylor principle does not appear to be a necessary condition for that kind of dynamics to obtain. By contrast, the lack of credibility produces unanchored and endogenous expectations dynamics, which do significantly disturb the ability of the CB to stabilise the economy, especially when the volatility of the learning environment is significant. In that case, we observe a sharp trade-off regarding the achievement of the inflation versus the real economic objective.

Second, when the communication of the CB on the target is inaccurate, our findings echoe the debate that has arisen in the literature on the optimal degree of CB transparency in an imperfect public information environment (see, more particularly, Morris & Shin (2002), Svensson (2007), Dale et al. (2011)). We notably emphasize the welfare cost of the disclosure of highly imperfect public information. In our model, the inaccuracy of the communication on the inflation target generates two potential sources of macroeconomic instability. One is related is to a lack of coordination between individuals, who then hold heterogeneous expectations; the other is driven by the lack of coordination between the CB and agents, when private expectations and the CB's target diverge. Both of these coordination failures strongly disturb the learning process and, in turn, the ability of the CB to stabilise the economy. The unanchoring of private expectations is the main source behind disruption of the transmission of monetary policy to the economy.

The remainder of the paper is organized as follows: Section 2 describes the ABM of the learning economy that we adopt in our analysis. We also detail how we evaluate, in such a setting, the macroeconomic impact of IT, through the specification of alternative scenarios for the formation of inflation expectations by the private sector. Section 3 details our simulation protocol and experimental design we use to generate the results. Contrary to most of the analyses that use the NK model as a framework, ABMs do not rely upon any analytical closedform solutions because of non linearity and randomness in agents' decisions and interactions, and the non ergodicity of the resulting dynamic system. As a consequence, results are obtained through computer simulations. In order to frame that simulation exercise, we use the *designs of experiments* approach – a smart sampling method inherited from engineering – that allows for an exploration of the model parameters space in a very parsimonious way, contrary to Monte Carlo simulations. The main findings are discussed at length in Section 4. We organise the discussion around the two-sided role played by the inflation target within the IT regime: as an coordinating/anchoring device with respect to the private sector's inflation expectations and as a credibility device for the CB regarding the price stability objective of monetary policy. Section 5 concludes.

2 Modelling a learning economy with an ABM

The internal logic of the modelling strategy we adopt in this paper is very different from that of the DSGE models. ABMs are sequential by nature, and the sequence of events has to be described step by step. In DSGE models (including the NK model), agents' decision problems (and the equations used to depict them) are generally solved simultaneously under the assumption of a market clearing general equilibrium process. Nevertheless, we have kept the structure of the ABM deliberately very close to that of the NK model, to allow for comparisons between the outcomes stemming from both frameworks: our ABM is a simple aggregate demand-aggregate supply economic model augmented with a Taylor rule, in which the good market operates under imperfect competition, and price/wage adjustments are characterised by nominal rigidities. The sequence of events we retain in that setting is as follows.

First, the labour market allocates each household's labour supply to the firm, and then determines the unemployment rate. That process gives the labour costs, the good supply and the corresponding price. Each household then chooses the level of consumption it desires (and thus its savings or indebtedness strategy). Supply and demand are confronted on the good market: the effective level of consumption is then determined (at aggregate level). The CB then sets the nominal interest rate based on the inflation and unemployment rate. Eventually, both agents – the firm and household – update their strategies, and the story starts all over

again.

2.1 Households

The economy is populated by n households, indexed by $i, i \in [1, n]^5$.

Labour supply Each household is endowed with an inelastic labour supply normalized to one for each period, i.e. $h_{i,t}^s = 1$, $\forall t, i$. That allows unemployment to be explicitly defined in the model. That type of restriction is a common one in agent-based macroeconomic models (see, for example, Delli Gatti et al. (2005), Oeffner (2008), Gaffeo et al. (2008) or Raberto et al. (2008)) and could be easily interpreted as a full-time job.

Our model is characterised by radical uncertainty, in which future paths of relevant variables cannot be given by standard probability laws. Information is only local, and agents are not aware of other agents' characteristics and decisions. Consequently, households' behaviour cannot be described through the usual intertemporal utility maximisation and corresponding first order conditions. In particular, households are not capable of optimally dealing with the trade-off between labour and leisure, which would give rise to an optimal wage rate; nor are households able to derive an optimal consumption path given by the usual first order conditions of the utility maximisation programme (Euler relation). We therefore assume that households use two simple behavioural rules that are updated as they learn more about their environment. The first rule concerns the adjustment of their desired wage; the second one relates to the level of desired consumption (or their savings or borrowing strategy).

For every period t, each household i sets its wage, at which it wants to be hired, according to the rule:

$$w_{i,t} = w_{i,t-1} \times \left(1 + \mathbb{1}_{(\pi^e_{i,t+1} > 0)} \gamma^w_{i,t} \cdot \pi^e_{i,t+1}\right) \tag{1}$$

where $\gamma_{i,t}^w > 0$ stands for the degree of indexation that household *i* sets at time *t* on the inflation rate it expects for the following period, $\pi_{i,t+1}^e$ (both determined below). Heuristics (1) indicates that the desired wage is increased only if the expected inflation rate is positive. In that case, households raise it by $\gamma_{i,t}^w \cdot \pi_{i,t+1}^e$; otherwise, they keep it unchanged. Wages increase in function of the expected inflation rate, while assuming nominal wage downward stickiness. Other works, using that assumption include Oeffner (2008) and Raberto et al. (2008). Although not an explicit ingredient of NK models, that assumption introduces a direct transmission channel of

⁵ Small letters stand for individual variables, and capital letters for aggregate ones. Supply and demand variables are respectively indicated by s and d-superscripts.

inflation expectations to labour costs and, hence, to price level. That mechanism constitutes the expectations channel of monetary policy (which we further document in Section 2.6). In accordance with that behavioural rule, coefficient $\gamma_i^w \ge 0$ is one of households' two strategies.

Consumption For each period, households also determine the income share $k_{i,t}$ they plan to spend in consumption. The good demand (in real terms) of each household *i*, $c_{i,t}^d$ is therefore given by:

$$c_{i,t}^d = k_{i,t} \cdot \tilde{y}_{i,t} \tag{2}$$

where $\tilde{y}_{i,t}$ corresponds to his permanent income as defined by Friedman (1957, Chap. III):

$$\tilde{y}_{i,t} = (1-\rho)\frac{y_{i,t}}{P_t} + \rho \tilde{y}_{i,t-1} = (1-\rho)\sum_{l=0}^t \rho^{t-l} \frac{y_{i,l}}{P_l}$$
(3)

 $\rho \in [0, 1[, P_t \text{ the price level and } y_{i,t} \text{ the nominal income flow it receives for each period:}$

$$y_{i,t} = w_{i,t}h_{i,t} + \frac{\prod_{t=1}}{n} + b_{i,t-1}(1+i_{t-1})$$
(4)

 $\frac{\Pi_{t-1}}{n}$ is a share of the previous period's total profits in the economy, $b_{i,t-1}$ represents nominal holdings (positive for savings and negative for debt) and *i* is the nominal risk-less interest rate set by the CB (see Section 2.3). The variable $h_{i,t}$ is the labour that household i effectively supplies to the firm at its desired nominal wage $w_{i,t}$ for time *t* (see Equation (1)). It should be noted that $h_{i,t} \leq h_{i,t}^s$, since households can be rationed on the labour market (see Section 2.5). Finally, and considering their desired level of consumption cdi,t, the amount of nominal (desired) savings or indebtedness $b_{i,t}$ is given by:

$$b_{i,t} = y_{i,t} - c_{i,t}^d \times P_t \tag{5}$$

In Behavioural Rule (2), we assume that households are concerned with smoothing their consumption path (with respect to current income streams), in the spirit of the Euler equation, which determines consumption evolution in NK models (see Woodford (2003, Chap. 2)). Furthermore, if $k_{i,t} > 1$, household *i* borrows money to consume more than its income, and if $k_{i,t} < 1$, it saves part of its income to be consumed later. Note that agents face a budget constraint, which is not an intertemporal one, but a flow budget constraint, as agents are not able to plan their spending over an infinite horizon⁶.

The consumption share of household i, $k_{i,t}$, depends on the gap between the real interest rate it expects, i.e. $i_t - \pi^e_{i,t+1}$ and the natural level (defined below) r^n_t , *i.e.*:

$$k_{i,t} = k_{i,t-1} - \gamma_{i,t}^k (i_t - \pi_{i,t+1}^e - r_t^n)$$
(6)

Heuristic (6) is the counterpart of the usual Euler relation in the ABM, which allows us to obtain an "aggregate demand" channel (or consumption channel) for monetary policy. That point is further discussed below (see Section 2.6). The coefficient $\gamma_{i,t}^k \in \mathbb{R}$ represents households' second strategy.

Households' learning The indexation strategy $\gamma_{i,t}^{w}$ and the substitution strategy $\gamma_{i,t}^{k}$ are updated for each period, reflecting the assumption that agents continually adapt their rules through a perpetual learning process (Orphanides & Williams (2005)). We assume a social learning mechanism (imitation) coupled with a random exploration of the space of strategies. ABMs which take into account the learning of agents do, very frequently, adopt a similar representation of learning⁷. That is well-suited to represent learning in a heterogeneous population of agents, who aim to adapt their behaviour to the evolution of their environment. Here, house-holds' decisions are motivated by their aim of increasing their performance, measured through their smoothed utility:

$$\tilde{u}_{i,t} = (1-\rho)u_{i,t} + \rho \tilde{u}_{i,t-1} = (1-\rho)\sum_{l=0}^{t} \rho^{t-l} u_{i,l}$$
(7)

where $u(c_{i,t}) \equiv ln(c_{i,t})$, $\forall i$ and the use of a smoothed measure of performance denotes an intertemporal concern.

For each period, with a probability P_{imit} , a household imitates a pair of strategies (γ^w, γ^k) of another agent. That learning mechanism favours the diffusion of the most successful strategies among agents: the more utility a household obtains, the more likely its pair of strategies is to be imitated by another household. Accordingly, the probability of household *i* being imitated

⁶ In DSGE models, transversality conditions are imposed to avoid explosive dynamics in bond process. Such restrictions cannot be set in our model, in which we have to impose period-by-period constraints. In that respect, we impose an upper limit $\bar{k} > 1$ to consumption rate k, in order to rule out excessive debt and household bankruptcy, and we impose a lower bound \underline{k} to ensure minimal subsistence consumption for each period.

⁷ see notably Holland et al. (1989), Sargent (1993) and Brenner (2006) for general statements. Applications to economic issues include, for example, Arifovic (1995) or Yıldızoğlu (2002).

is given by:

$$\frac{\exp(\tilde{u}_i)}{\sum_{l=1}^n \exp(\tilde{u}_l)}.$$
(8)

where the exponential function is set to cope with negative utility values.

With a probability P_{mut} , a household can also perform a random experiment, by drawing a new γ^w coefficient from a normal distribution with the mean equal to the population strategies' mean, i.e. the mean of the coefficients γ^w across all households, and a given standard-deviation, denoted by σ_{mutW} : $\mathcal{N}\left(\frac{\sum_{l=1}^n \gamma_l^w}{n}, \sigma_{mutW}\right)$. We truncate the draw at zero, as negative indexation coefficients do not make any sense. The new strategy γ^k is also drawn from a random normal distribution, with a given standard deviation $\mathcal{N}\left(\frac{\sum_{l=1}^n \gamma_l^k}{n}, \sigma_{mutK}\right)$, but that draw does allow for negative coefficients (see Section 2.6). Parameters σ_{mutK} and σ_{mutW} stand for a measurement of variability in the learning process; that variability feeds back into the macroeconomic dynamics (see Section 2.6). In the case of no imitation nor random experiment (i.e. with a probability $1 - P_{imit} - P_{mut}$), the household keeps its past strategies.

2.2 The firm

In our model, as in the baseline NK one, labour is the only input; there is no capital, but we assume a single firm producing a perishable good. Nevertheless, that discrepancy with the usual monopolistic competition of the NK framework (see Blanchard & Kiyotaki (1987)) turns out to be a minor one. That particular framework involves many identical firms (which share the same production function and the same mark-up on the marginal cost) and focuses on symmetric equilibrium. In such a context, considering a single firm does not appear restrictive, given the objective we give to our model. It should be noted that macroeconomic ABMs commonly make that assumption: for example, in Raberto et al. (2008).

Price setting Suppose the firm is able to hire H units of labour (see below how that is performed). It produces the good using an usual production function (see, for example, Gali (2008)):

$$Y_t^s = A_t H_t^{1-\alpha} \tag{9}$$

where $\alpha \in [0, 1]$ encompasses decreasing returns, A_t is the technology factor and H_t is the quantity of hired labour. The firm faces the production costs:

$$\Psi(Y_t^s) = \sum_{i=1}^n h_{i,t} w_{i,t}$$
(10)

and its profit is given by:

$$\Pi_t = P_t Y_t - \Psi(Y_t^s) \tag{11}$$

where P_t is the aggregate price level, H_t is the amount of hired labour and W_t is the nominal aggregate wage level, which is computed as a weighted average of individual ones, i.e. $W_t \equiv \frac{\Psi(Y_t^s)}{H_t}$.

The firm acts in a two-stage manner (Walsh (2003, Chap. 5)). First, thanks to its market power, it sets its price P for any quantity of good Y^s it may produce, according to a mark-up μ on the marginal cost, given by:

$$\Psi'(Y_t^s) = \frac{W_t}{(1-\alpha)} \frac{Y_t^s}{A_t}^{\frac{\alpha}{1-\alpha}} = \frac{\Psi(Y_t^s)}{(1-\alpha)Y_t^s}$$
(12)

and consequently the resulting price:

$$P_t = \frac{(1+\mu)}{(1-\alpha)} \frac{\Psi(Y_t^s)}{Y_t^s}$$
(13)

which increases in function of the production Y^s as soon as $\alpha > 0$. The firm then (second stage) determines the quantity Y_t^s for each period, that it expects to sell at the corresponding price P_t .

As for households, the firm has only a limited knowledge of the problem it faces: notably, it does not know the demand on the good market it is confronted with, because it is not capable of anticipating all individual demands $c_{i,t}^d$. We assume that the good is perishable. The firm has therefore to set its production level Y_t^s facing a twofold constraint: on the labour market, the total amount of labour supply is limited to n units (one per household), and on the good market, the firm can be constrained by demand.

Firm's learning As for households, the firm is also engaged in a learning process. We express its supply strategy in terms of a labour demand strategy⁸ H_t^d . The firm aims at gradually adjusting its strategy H^d towards an increase of its profit. As we assume a single firm, it cannot benefit from social learning and can only learn through an individual learning process. We consider a simple adaptive mechanism, which is a smooth form of learning, much in the spirit of gradient learning (see, for example, Leijonhufvud (2006, pp. 1631-32) or Delli Gatti

⁸ Having a labour demand or a good supply strategy is equivalent from the firm's point of view, as labour is the only input (see Equation (9)). Once the mark-up price has been set, any subsequent price adjustments are equally quantities adjustments, so that the firm has actually only one decision-making variable, expressed here in terms of labour demand.

et al. (2005)). As the firm's profit increases with the quantities of good sold (as soon as $\alpha \neq 0$), and decreases in case of unpurchased quantities, the firm raises its labour demand when its profit is above trend $\tilde{\Pi}_t$. We therefore specify the rule:

If
$$\frac{\Pi_t}{P_t} \ge \tilde{\Pi}_t$$
 then $H^d_{t+1} = H_t \times (1+\epsilon)$ (14)

If
$$\frac{\Pi_t}{P_t} < \tilde{\Pi}_t$$
 then $H^d_{t+1} = H_t \times (1 - \epsilon)$ (15)

where $\epsilon > 0$ is a parameter which denotes an adjustment rate. That is an iterative algorithm which proceeds by successive improvements. Smaller ϵ depict a smoother and slower learning mechanism.

It should be finally noted that NK models assume price stickiness in a Calvo (1983) manner, i.e. for each period, with only some firms being able to adjust their prices in case of changes in the demand. This creates a nominal rigidity which allows for real effects of monetary policy in the short run. We choose to integrate such a rigidity in the nominal wage adjustment process (see Equation (1)). Furthermore, the firm's learning process already implies that it does not optimally adjust the good supply, and hence the price, when facing changes on the demand side. The point here is that, in our economy, as in the NK one, the Philips curve – emerging through the relationships between production, price level, and the expected inflation rate (see Equations (1), (9) and (21)) – does incorporate a nominal rigidity.

2.3 Monetary policy rule

The CB, which acts as a flexible inflation targeter, reacts to both inflation and the level of activity, and sets the nominal interest rate i following a non-linear Taylor (1993) instrumental rule:

$$1 + i_t = (1 + \pi^T)(1 + r_t^n) \left(\frac{1 + \pi_t}{1 + \pi^T}\right)^{\phi_\pi} \left(\frac{1 + u^*}{1 + u_t}\right)^{\phi_u}$$
(16)

where π^T stands for the inflation target, u^* for the natural rate of unemployment, and $\phi_{\pi} > 0$ and $\phi_u > 0$ are the reaction coefficients to inflation and unemployment rates in the rule. Parameter ϕ_u relies on the unemployment rate as a target variable, as we are able to explicitly derive its value from the model. Other contributions using that activity level measurement notably include Orphanides & Williams (2007). We consider the non-linear form of the rule, because the log-linearised form is suited to cases, in which inflation and unemployment dynamics are kept close to their objectives but, in our case, the model is non-linear by nature, and dynamics may strongly depart from those values.

2.4 IT and inflation expectations

Each household forms, at time t, its one-step-ahead inflation expectation $\pi_{i,t+1}^e$. We assume five different scenarii for the formation of inflation expectations. Those scenarii allow us to incorporate three components of IT: the credibility and precision of the inflation target and coordination of inflation expectations.

Formally, each household forms its inflation expectation as a weighted average of its perception of the inflation target (π_i^p) and past trend inflation $(\tilde{\pi}_t)$, i.e.:

$$\pi_{t+1}^e = \chi \cdot \pi_i^p + (1 - \chi) \cdot \tilde{\pi}_t \tag{17}$$

The weight parameter χ ($\chi \in [0,1]$) is assumed to be common across all households, and may be interpreted as the degree of credibility of the target, i.e. the extent to which inflation expectations are anchored to the (perceived) inflation target. That definition is consistent with the one given by Faust & Svensson (2001), according to which credibility is measured as minus the absolute distance between the announced target and the actual private inflation expectations. Here, as χ goes to one, credibility increases.

The perceived inflation target and the true target are related to each other through the following relationship: $\pi_i^p = \pi^T + \xi_i, \ \xi_i \rightsquigarrow \mathcal{N}(0, \sigma_{\xi}^2)$. The precision of the inflation target is tackled through noise ξ_i : if σ_{ξ}^2 is high, the true target is highly imprecisely perceived, yielding a value for π_i^p far from π^T . If $\sigma_{\xi}^2 = 0$, the target is perfectly clear and $\pi^p = \pi^T$. We further define the coordination of inflation expectations as a situation in which all households hold the same expectation, i.e. $\xi_i = \xi, \ \forall i$, which implies $\pi_{i,t+1}^e = \pi_{t+1}^e, \ \forall i$.

Based on Equation (17) and the definition of π_i^p , Table 1 depicts the five different scenarii we retain in our analysis.

Scenario 1 is the benchmark case in which the CB perfectly communicates its inflation target and is perfectly credible: households' expectations are, therefore, fully anchored to the inflation target. That scenario is the closest to the usual NK setup as private expectations are consistent with the CB's objectives.

Scenarii 2 and 3 introduce noise in the CB communication⁹, and, in both cases, σ_{ξ}^2 stands for the degree of imprecision of the CB's announcement. Moreover, in those scenarii, the CB

⁹ see Demertzis & Viegi (2009), Ueda (2009) or Lipinska & Yates (2010) for such specifications of noisy signals.

	π_i^p	χ	$\pi^e_{i,t+1}$	credibility	precision	coordination
1	$\pi^T, \forall i$	1	$\pi^T, \forall i, t$	full	perfect	yes
2	$\pi^p \rightsquigarrow N(\pi^T, \sigma_{\xi}), \forall i$	1	$\pi^T + \xi, \forall i, t$	full	noisy	yes
3 a	$\pi_i^p \rightsquigarrow N(\pi^T, \frac{\sigma_{\xi}}{n})$	1	$\pi^T + \xi_i, \forall t$	full	noisy	no
4	$\pi^p = \pi^T, \forall i$	$\in]0,1[$	$\chi \pi^T + (1-\chi)\tilde{\pi}_t, \forall i$	partial	perfect	yes
5	$\pi^p = \pi^T, \forall i$	0	$ ilde{\pi}_t, \forall i$	none	perfect	yes

Table 1: The five scenarii of inflation expectations

^a Both normal draws are truncated at zero, in order to avoid negative perceived inflation targets. In Scenario 3, each individual's perceived inflation target is drawn in a normal distribution with mean π^T , as in Scenario 2 but with standard deviation equal to σ_{ξ}/n , so that those *n* draws introduce a noise in the model that is equivalent to a single draw in Scenario 2.

is credible, in the sense that all agents rely on its signal, but that signal is not perceived in the same way: in Scenario 2, households share the same noisy inflation target, so that expectations are coordinated, whereas, in Scenario 3, each household has its own perceived inflation target, and expectations are heterogeneous. Admittedly, the CB perfectly knows its own inflation target and, in case of complete credibility, the announced target should match the true one. However, in Scenario 2, the prevalence of a noisy target can be interpreted as a proxy for the information the CB communicates as a whole (including its inflation forecasts, for example) and that information is mostly noisy (Dale et al. (2011)). Scenario 2 is, therefore, designed to investigate the consequences of expectations coordination on a wrong public signal. We believe such a case is particularly interesting because a wave of contributions (initiated by Morris & Shin (2002)) has highlighted the fact that agents tend exclusively to rely on public information, which can become costly if that information is imperfect. That could also be true in Scenario 2, as we assume $\chi = 1$.

In Scenario 3, different perceptions of the CB communication can arise from different sources: divergent points of view in monetary policy committees can contribute to uncertainty, and also to divergent interpretations of the CB communication. CB announcements can also be differently perceived or differently broadcast by media (see the contributions surveyed in Blinder et al. (2008)). In that case, ξ_i denotes a kind of private noise, and individuals hold different expectations.

Scenarii 4 and 5 are designed to investigate the lack of credibility of the CB communication. In those cases, households perfectly perceive the inflation target but rely only partially on it. They also take into account past observations to expect future inflation rates (values of χ in Scenario 4 are given in Section 3). This modelling of partial credibility is very close to those in Brazier et al. (2008) and De Grauwe (2011). Furthermore, that is consistent with the findings of Roos & Schmidt (2011), who show that backward-looking behaviour is a decisive factor in expectations formation by non-economist people, such as households. Scenario 5 is the nested case of no credibility, where individuals form completely adaptive expectations.

2.5 Aggregation and dynamics

As stated above, market clearing assumptions cannot be imposed as such, because agents' strategies are not *a priori* mutually consistent. Instead, markets confront individual supplies and demands according to rationing mechanisms.

Labour market The firm's strategy is the aggregate demand of labour H_t^d , and aggregate supply is given by:

$$H_t^s = \sum_{i=1}^n h_{i,t}^s = n$$
 (18)

Both are matched according to a process which is designed to be consistent with the assumption that the firm aims at minimizing its production costs. The firm sorts households by increasing desired wages, and hires the less demanding ones first. The aggregate hired labour is then set as:

$$H_t = \min(H_t^d, n) \equiv \sum_{i=1}^n h_{i,t}$$
(19)

Unemployment rate is computed as $u_t = \frac{n-H_t}{n}$, and the wage rate is given ex post by $\omega \equiv \frac{W_t}{P_t} = \frac{(1-\alpha)}{(1+\mu)}H_t^{-\alpha}$, where W_t is the aggregate wage defined in Section 2.2. Variable ω is decreasing in function of H and reaches a minimum equal to $\frac{(1-\alpha)}{(1+\mu)}n^{-\alpha}$, when full employment is reached.

Good market Aggregate labour (19) yields aggregate good supply Y_t^s through production function (9), and aggregate good demand is given by (see Equation (2)):

$$C_t^d \equiv \sum_{i=1}^n c_{i,t}^d \tag{20}$$

Both are matched according to an efficient rationing mechanism: households are ranked by decreasing good demand, so that the firm meets the highest demand first. We choose that rationing scheme in order to be in conformity with the assumption of utility maximisation assumed in the NK model. If a household is rationed, it buys bonds with its remaining cash. Inflation π_t is computed as $\pi_t = \frac{P_t - P_{t-1}}{P_{t-1}}$. A special case obtains when full-employment is reached and the firm can sell all its production. In that case, its rate of profit reaches a maximum level

equal to $\frac{(\alpha+\mu)}{(1+\mu)}n^{1-\alpha}$.

As the full model has now been specified, we proceed to discuss the monetary policy channels in the model.

2.6 Discussion

In the NK framework, dynamics arise in the following way: price stickiness creates a discrepancy between current production and its natural level, which prevails in a fully flexible price environment. In the long run, the natural product is constant, reaching a steady state level. Two kinds of shock are introduced. Real shocks make the natural product fluctuate around the steady state level, and impact the inflation rate through an effect on the output gap (i.e. the gap between the product and its steady state value). Cost-push shocks directly affect the Phillips curve and, hence, inflation dynamics. Our model works in a rather different way.

First we assume a deterministic natural production level, with $A_t = 1$, $\forall t$ (the long run value of the technology defined by Woodford (2003, p. 225)). Consequently, we assume a constant natural interest rate r_t^n , equal to zero. In NK models, r_t^n is a function of agents' time preference, and of real shocks, which modify the natural production level. In our model, however, there is no explicit time preference, because agents do not solve intertemporal optimization programmes. We also assume the natural level of unemployment $u^* = 0$, so that the resulting natural level of production equals $n^{1-\alpha}$. That represents potential production level, i.e. the level prevailing if all the labour supply is employed, which is the situation the CB is targeting (see Equation (16)).

Two phenomena are likely to move inflation and unemployment away from the objective values of the CB. On the one hand, the departure from the rational expectations benchmark has been shown to endogenously result in macroeconomic volatility, and to create business cycles (see, for example, **De Grauwe** (2011)). On the other hand, households' learning creates volatility in the model, through the random exploration of the space of households' strategies, which is captured by shocks σ_{mutW} and σ_{mutK} . Those variables cannot be directly translated either in terms of demand/supply shocks, as they are in standard Keynesian macroeconomic models, or in terms of real/cost-push shocks, as in NK models. However, those shocks affect the transmission of monetary policy, both through the consumption channel (Heuristic (6)) and through the expectations channel (Heuristic (1)). It should be recalled that monetary policy affects demand through the nominal interest rate which, together with agents' inflation expectations, determines the real interest rate, which is relevant for consumption decisions (see Equation (6))). Inflation expectations directly affect the price through production costs (Equation (1)), as in the expectation-augmented Phillips curve in the NK framework. Consequently, the coefficients $\gamma_{i,t}^w$ and $\gamma_{i,t}^k$ have a major influence on monetary policy performances.

In order to illustrate that point, let us write the inflation rate as (see Equation (13)):

$$\pi_t \equiv \frac{\Delta P}{P_{t-1}} = \frac{\Delta \Psi}{\Psi_{t-1}} - (1 - \alpha) \frac{\Delta H}{H_{t-1}}$$
(21)

where ΔX stands for the variation of variable X between periods t - 1 and t. With equation (10), we can write $\Delta \Psi \equiv \sum_{i=1}^{n} w_{i,t-1} \Delta h_i + h_{i,t-1} \Delta w_i$, and through equation (1), we have:

$$\Delta w_i = \mathbb{1}_{(\pi^e_{i,t+1} > 0)}(\gamma^w_{i,t} \pi^e_{i,t+1} w_{i,t-1}) \tag{22}$$

which implies $\Delta w_i \ge 0$, $\forall i, t$. By rearranging terms in (21) and using $\Delta H \equiv \sum_{i=1}^n \Delta h_i$, the inflation rate in the model is given by:

$$\pi_t = \frac{\sum_{i=1}^n \Delta w_i h_{i,t-1}}{\Psi_{t-1}} + \sum_{i=1}^n \frac{\Delta h_i}{H_{t-1}} \left(\frac{w_{i,t-1}}{W_{t-1}} + \alpha - 1 \right)$$
(23)

Inflation is driven by two components. First, inflation is positively related to nominal wages growth rate (Δw_i) , which positively depends on both inflation expectations $\pi_{i,t+1}^e$ and indexation strategies $\gamma_{i,t}^w$ (see Equation (22)). Hence, in our model, the learning environment is directly connected to inflation dynamics. Coefficients γ_i^w stand for the strength of second-round effects, through which the expected inflation feeds back into the actual inflation through wages. Second, inflation increases in function of the rise in employment (Δh_i) . In order to understand this point more clearly, we should first consider that we have $\frac{w_{i,t-1}}{W_{t-1}} > 1 > 1 - \alpha$ for households, which face a variation of their labour (i.e. with $\Delta h_i \neq 0$). As the firm sorts households in terms of increasing desired wages on the labour market, those households are those likely to be hired, as soon as labour demand increases for the next period: we have $\Delta h_i > 0$. The reverse is true if labour demand decreases, and, consequently, the inflation rate is positively related to variations in employment.

A specific case obtains if full-employment is reached: we have $h_{i,t-1} = h_{i,t} = 1 \Rightarrow \Delta h_i = 0$, $\forall i, H_{t-1} = H_t = n \Rightarrow \Delta H = 0$ and $\Psi_{t-1} = \sum_{i=1}^n w_{i,t-1}$. By combining those elements with Equation (22), we can write the inflation rate as:

$$\pi_t = \frac{\sum_{i=1}^n \gamma_{i,t}^w \pi_{i,t+1}^e w_{i,t-1}}{\Psi_{t-1}} \tag{24}$$

In that case, it is in the CB's interest that coefficients $\gamma_{i,t}^w$ remain on average equal to one (i.e. $\sum_{i}^n \gamma_{i,t}^w = n$), and households' inflation expectations remain equal to the target (i.e. $\pi_{i,t+1}^e = \pi^T$, $\forall i$), which implies $\pi_t = \pi^T$. If σ_{mutW} is high, indexation strategies can depart strongly from the previous average ones, thereby introducing volatility in nominal wages growth, and hence in the inflation rate.

In a comparable way, variability induced by σ_{mutK} affects the consumption channel of monetary policy. For each household *i*, the expected real interest rate $r_{i,t+1}^e \equiv i_t - \pi_{i,t+1}^e$ between period *t* and *t* + 1 has a immediate effect on its demand (see Equation (6)):

$$\frac{\partial c_{i,t}^d}{\partial r_{i,t+1}^e} = \frac{\partial k_{i,t}}{\partial r_{i,t+1}^e} \times \tilde{y}_{i,t} = -\gamma_{i,t}^k \tilde{y}_{i,t}$$
(25)

and a one-period-ahead effect:

$$\frac{\partial c_{i,t+1}^d}{\partial r_{i,t+1}^e} = \frac{\partial k_{i,t+1}}{\partial r_{i,t+1}^e} \times \tilde{y}_{i,t+1} + k_{i,t+1} \times \frac{\partial \tilde{y}_{i,t+1}}{\partial r_{i,t+1}^e}$$
(26)

$$= -\gamma_{i,t}^{k} \tilde{y}_{i,t+1} + k_{i,t+1} (1-\rho) \frac{b_{i,t}}{P_t}$$
(27)

If household *i* chooses a strategy with $\gamma_{i,t}^k > 0$, a rise in the expected real interest rate yields to a decrease in its demand (see Equation (25) and the first term of (26)): the substitution effect of a switch in the real interest rate dominates. If household *i* chooses $\gamma_{i,t}^k < 0$ strategies, the consumption share rises if the real interest rate is above its natural level, and the income effect dominates. Coefficients $\gamma_{i,t}^k$ have to be mostly positive for the CB to influence demand in such a way that an increase in the nominal interest rate achieves a slowdown in demand (which corresponds to the usual consumption channel of monetary policy; see, for example, Walsh (2003, p. 248)). The second term in (26) is positive if $b_{i,t} > 0$, and negative otherwise, which represents the wealth effect of a change in the real interest rate. High positive values of coefficients γ^k imply that demand is more sensitive to changes in the interest rate, thereby improving the efficiency of the consumption channel. Furthermore, if households' inflation expectations are coordinated, i.e. if $\pi_{i,t+1}^e = \pi_{t+1}^e$, $\forall i$, changes in the nominal interest rate produce changes in the real expected interest rates in the same proportion among households, and monetary policy more efficiently controls demand. High values of the shocks σ_{mutK} induce high variability in the way monetary policy influences aggregate demand. Those shocks may be interpreted as reflecting different degrees of uncertainty surrounding the aggregate demand transmission channel.

In short, the monetary authorities try to stabilize inflation and employment facing i) a global uncertain context due to the heuristic forms of behaviour of agents, in which ii) variability in the price level (through second-round effects) can be more or less strong and iii) the real transmission channel of monetary policy may be more or less stable.

3 Simulation protocol

In our model, we first analyse the impact of monetary policy according to the way expectations are formed, and how those expectations interplay with the learning environment, and then focus on the resulting macroeconomic performances. We choose to set all structural parameters of the model at the same level for each scenario. We set $\alpha = 0.25$ (Woodford (2003)) and $\mu = 0.1$ (Rotemberg & Woodford (1998), Woodford (2003)) and $\pi^T = 0.02$, as that value corresponds to the target of most CBs in developed countries and $\epsilon = 0.01$, $\bar{k} = 1.5$, $\underline{k} = 0.5$. We focus on the impact of the learning and monetary policy parameters. We define three levels of learning: a slow one $(P_{imit}, P_{mut}) = (0.05, 0.01)$, and two more reactive ones $(P_{imit}, P_{mut}) = (0.1, 0.05)$ and $(P_{imit}, P_{mut}) = (0.15, 0.1)$. We set $(\sigma_{mutK}, \sigma_{mutW}) \in [0.05, 0.4]^2$, $(\phi_{\pi}, \phi_u) \in [0, 2] \times [0, 1]$, $\sigma_{\xi} \in [0.001, 0.05]$, $\chi \in \{0.1, 0.2, ..., 0.9\}$ and $\rho \in \{0, 0.45, 0.9\}^{10}$.

We have n = 500 households and T = 800 periods¹¹. As the model is not deterministic, each experiment is repeated 20 times in order to take into account the randomness of the initialization and the learning process. Each variable is saved every 50 period and we discard the first 100th periods in order to rule out the effects of initialization on the analysis. We then have 5100 data of each response variable in each scenario. The next section compares the resulting outcomes in the five scenarios.

We use a *design of experiments* to sample that space of parameters¹².

Large sampling methods such as Monte Carlo simulations come at a computational cost, if there are numerous parameters with large experimental domains. We have to launch a huge number of simulations to obtain a representative sample of all parameter configurations. Design

¹⁰ The weight of the $t - n^{th}$ period in moving averages of the form (7) is equal to ρ^n . To that respect, $\rho \in \{0, 0.45, 0.9\}$ corresponds to three magnitudes of backwardness, i.e. naïve behaviours, a few periods backwards and many periods backwards $(0.9^{45} \simeq 0.45^6)$.

¹¹ This is due to computational constraints. Considering a higher number of agents comes at a computational cost. Setting 800 periods avoids numerical explosions in the software, in case of huge inflation rates. Moreover, plots in Appendix B show that it is enough to stabilize aggregate welfare and significantly allow the learning process to take place.

¹² See, for example, Goupy & Creighton (2007) for a pedagogical statement. That method is widely used in computer simulations in areas such as industry, chemistry, computer science, biology, etc. To the best of our knowledge, Oeffner (2008) and Yıldızoğlu et al. (2011) are the only applications concerning an economic ABM.

of experiments allows us to minimize the sample size under constraint of representativeness, thereby providing a design of all parameters (or factors) configurations. Certain properties of the design are particularly useful: space-filling properties, i.e. the design has to correctly cover the whole space of parameters; the non-collapsing criterion, which ensures that each point is uniquely tested; non-correlation between configurations of parameters, which avoids multicollinearity issues in result analysis. We use the design proposed by Cioppa (2002), which offers an interesting design regarding those three properties. We then study 17 parameter settings (or experiments, see Appendix A). We have n = 500 households and T = 800 periods¹³. As the model is not deterministic, each experiment is repeated 20 times in order to take into account the randomness of initialization and the learning process. Each variable is saved at every 50 period, once having discarded the first 100 periods, in order to rule out the effects of initialization on the analysis. We then have 5100 data for each response variable in each scenario. The following section compares the resulting outcomes in the five scenarii.

4 Results

According to the literature surveyed so far, two dimensions play a major role for IT performances: the precision and credibility of the target. We aim at assessing how those two factors affect IT performances in our learning economy. In that respect, we first analyse how the model works when the target is perfectly clear and credible (Scenario 1), which allows us to see how learning operates, and interplays with the working of the economy under a perfectly clear and credible IT regime. We then assess how noisy communication or partial credibility can cause deviations from that benchmark.

In order to perform that analysis, we implement, for each scenario, a quadratic regression of the (squared) unemployment rate and inflation gap to the coefficients ϕ_{π} and ϕ_u of the monetary policy rule, controlling for the effects of the learning environment and the degree of noise and credibility (see Table 5 in Appendix B). Quadratic regression gives more detailed insights into the effects of those coefficients than linear regression does, all the more so as our model is non-linear by nature. We consider squared variables, in order to express CB's objectives like in standard loss functions (see, for example, Svensson (1999)). We also apply the welfare criterion

¹³ That is due to computational constraints. Considering a higher number of agents comes at a computational cost. Setting 800 periods avoids numerical explosions in the software, in case of huge inflation rates. Moreover, plots in Appendix B show that it is enough to stabilize aggregate welfare, and to significantly allow the learning process to take place.

of Lucas (2003), a method for comparing policy outcomes that is expressed in comprehensive units, and is built up from individual preferences (see Table ??).

4.1 The benchmark case: behavioural learning and IT

In our model, variability arises from two sources: one is structural, resulting from the learning process of agents; the other is due to the way inflation expectations are formed. In Scenario 1, inflation expectations are well anchored to the target, so that macroeconomic variability only comes from agents' learning. Accordingly, that scenario clearly exhibits the lowest volatility as far as average agents' behaviour, heterogeneity and macroeconomic performances are concerned¹⁴. Moreover, average levels of unemployment and inflation are the lowest over the 5 scenarii. That comes from the particular strategies that agents adopt in Scenario 1. First, the mean indexation coefficient is significantly lower than unity. As $\pi_{i,t+1}^e = \pi^T$, $\forall i, t$, nominal wages grow at a rate lower than the target, and so do prices (see Equations (23) and (24))¹⁵.

Second, average substitution coefficients reach the highest level and remain positive, which favours the control of demand by the CB (see Sub-section 2.6). Unemployment is on average equal to 9%, which can appear high, but that variable displays rather strong volatility¹⁶.

We now compare Scenario 1 with Scenario 5, in order to assess the benefits from a perfectly clear and credible target. Figure 1 illustrates the dynamics of the model in Scenario 1 in comparison to those in Scenario 5, in the absence of a credible target (Scenario 5). Although the emerging behaviour and macroeconomic performances strongly differ between both, the more salient difference concerns variability: the model is much more stable under Scenario 1.

The results of the econometric analysis, reported in Table 5 in Appendix B provide further insights about those rather good performances in Scenario 1. Variability in learning coming from indexation behaviour γ^w has a positive effect on the inflation gap, but the estimated coefficient is the weakest one over the 5 scenarii. By contrast, that variability does particularly contribute to moving inflation far from the target in the absence of a credible target (Scenario

¹⁴ For example, t-tests at 5% lead to strongly rejecting the null hypothesis that the variability of γ^k and γ^w among households is equal across the 5 scenarios, against the alternative that it is smaller in the benchmark scenario.

¹⁵ T-tests at 5% lead to rejecting the null hypothesis $\pi_t - \pi^T = 0$, against the alternative $\pi_t - \pi^T < 0$ (t-stat=-9.0953, p-value < 2e-16), and to rejecting the null hypothesis mean $(\gamma_{i,t}^w) = 1$, against the alternative mean $(\gamma_{i,t}^w) < 1$ (t-stat=-7.415, p-value 8.23e-14).

¹⁶ Full-employment wage rate level equals 0.1442 under our calibration. Average real wage in Scenario 1 reaches a higher level on average (0.1514 with a standard deviation of 0.0223). Variability in indexation strategies, leading to imperfect adjustments of the nominal wage W can explain why unemployment may arise in Scenario 1, despite the fact that inflation expectations are fully anchored at the target.

					Scenario
	1	2	3	4	5
$\pi_t - \pi^T$	-0.0026	0.0029	-0.0015	0.0057	0.0926
	(0.012)	(0.0357)	(0.0184)	(0.0624)	(0.1958)
u_t	0.0874	0.1715	0.1281	0.1795	0.228
	(0.2068)	(0.3037)	(0.2595)	(0.2968)	(0.3239)
$mean(\gamma_{i,t}^w)$	0.9416	1.033	1.0165	0.995	1.0875
,	(0.40)	(0.36)	(0.414)	(0.4661)	(0.5825)
$mean(\gamma_{i,t}^k)$	0.6585	0.557	0.6502	0.6246	0.5733
,	(0.1998)	(0.2832)	(0.211)	(0.1964)	(0.2668)
$var(\gamma_{i,t}^w)$	0.053	0.06	0.0596	0.059	0.0552
,	(0.0495)	(0.0477)	(0.0482)	(0.0469)	(0.0432)
$var(\gamma_{i,t}^k)$	0.0558	0.0613	0.0607	0.0611	0.0586
,	(0.0508)	(0.05)	(0.0487)	(0.0489)	(0.0489)
	Pearso	n correlatio	n tests bet	ween u^2 and	d $(\pi - \pi^T)^2$
correlation	0.153***	-0.056**	0.007	-0.09***	-0.211***
(p-value)	(<2.2e-16)	(0.001)	(0.667)	(1e-07)	(<2.2e-16)

Table 2: Mean and standard deviation in brackets of agents' behaviour and macroeconomic performances over the whole set of simulations (340 runs, data saved every 50 periods, 5100 data per scenario).

5). Under Scenario 1, variability in learning coming from the substitution behaviour does not influence CB's performances, whereas that variability significantly affects the unemployment rate in Scenario 5. On the whole, learning is associated with a better convergence towards both CB's targets and increasing welfare (see Figure 3) in Scenario 1, whereas its influence is less obvious in Scenario 5. That result is in line with previous ones, which have established that the announcement of policy objectives helps the CB to better stabilize the economy when private agents are engaged in a perpetual learning process (see, notably, Orphanides & Williams (2005, 2007), De Grauwe (2011)).

Finally, we compare the role of monetary policy across the two scenarii. As displayed in Figure 2, the role played by coefficients ϕ_{π} and ϕ_u of the monetary policy rule in Scenarii 1 and 5 is very different. In order to stabilize the economy, the CB's reaction is less constrained in Scenario 1: as soon as $\phi_{\pi} > 0.8$ and $\phi_u > 0.36$, the inflation gap and the unemployment rate are negatively impacted. By contrast, with no credible target, only a hawkish reaction to inflation combined with a strong reaction to unemployment decreases the inflation gap. Intuitively, we can imagine that such a strong reaction is necessary to offset unstable deflationary or inflationary patterns, which are created by purely adaptive expectations. However, that policy comes at the cost of unemployment, as such values of reaction coefficients clearly contribute to increasing the unemployment rate. The correlation tests reported in Table 2 confirm the above statements. There is no trade-off between the two objectives in Scenario 1: they are

Figure 1: Dynamics in Scenarii 1 and 5 in Experiment 8 overall 20 runs.

Experiment 8 has been chosen to illustrate the model's dynamics because its parameters values are close to the average of their variation domains (see Table 4 in Appendix A).

significantly and positively correlated. On the contrary, a negative correlation between the two objectives in Scenario 5 emerges (see Table 2).

Interestingly, in Scenario 1, hawkish reactions appear to better stabilize the economy, but the meeting of the so-called Taylor principle (i.e. the condition $\phi_{\pi} > 1$) does not emerge as a critical threshold. That result can be related to two strands of the literature.

On the one hand, monetary policy rules that are designed to be robust in face of uncertainty, especially uncertainty concerning the true model of the economy and/or the transmission channels of monetary policy, have been identified as rules that respond aggressively to inflation and output gap (see, for example, Tetlow & von zur Muehlen (2001)). In our model, the CB is clearly confronted with such an uncertainty.

On the other hand, it would be interesting to compare our results to those obtained in NK models, as Scenario 1 is the closest to that framework. In NK models, the Taylor principle has been emphasized as a major requirement. Two issues are critical. First, under rational expectations, the baseline NK model is determinate, i.e. converges to a unique stationary equilibrium path designed to be consistent with CB objectives, as soon as ϕ_{π} is sufficiently high, typically higher than 1 (see Woodford (2003)): the so-called Taylor principle. Second, Bullard & Mitra (2002) show that the Taylor principle is a necessary and sufficient condition for that unique equilibrium to be learnable under least squares learning, i.e. for agents' beliefs to eventually match the true driving process of the economy (the so-called "law of motion").

Figure 2: Sign of the estimated derivatives (based on 0.1-significant OLS estimated coefficients, see Table 5) of $(\pi - \pi^T)^2$ and u^2 with respect to ϕ_{π} and ϕ_u .

We make explicit the pairs of coefficients (ϕ_{π}, ϕ_u) which have a negative or a positive effect on the CB's objectives (taken as deviations from the targets). For values of the coefficients that have the same impact on *both* the inflation gap and unemployment rate (either negative, denoted by "-" or positive, denoted by "+"), the CB does not face any trade-off between its objectives, and the conduct of monetary policy is made easier. If some pairs of coefficients have a negative impact on one objective, but a positive one on the other ("-/+" indicates that the derivative is negative with respect to ϕ_{π} and positive with respect to ϕ_u , and "+/-" the reverse), the CB does face a trade-off between the two objectives. In that case, it stabilizes one objective at the expense of the other, making the achievement of both objectives more challenging.

In the ABM, the Taylor principle does not appear to be discriminant, suggesting that the CB can stabilize inflation and unemployment with weaker values of that coefficient. That result is in line with several contributions, which relativize the importance of the Taylor principle in a learning environment. In the linearized version of the NK model, Arifovic et al. (2007) assess whether the system can converge to the rational expectations equilibrium, if learning operates through a social learning mechanism modelled with a genetic algorithm. Those authors find that that is mostly the case, even when the Taylor principle does not hold. In an ABM, in which the CB chooses the monetary policy rule with a genetic algorithm, Delli Gatti et al. (2005) also show that the Taylor principle does not emerge as an evolutionary selected principle. In numerical experiments using the NK baseline model, Lipinska & Yates (2010) conclude that the performance of the economy is almost invariant in terms of the type of monetary policy rule conducted, when the signal of the CB about the inflation target is very precise and credible, as is the case in our Scenario 1.

To conclude our comparison, we obtain the following proposition:

Proposition 1 When inflation expectations are well-anchored to the target, the conduct of monetary policy is made easier, and the CB does not face any trade-off between inflation and unemployment. In particular, the meeting of the so-called Taylor principle (i.e. the condition $\phi_{\pi} > 1$) does not appear as a critical threshold, although hawkish reactions do better stabilize the economy.

benchmark	scenario 2	scenario 3	scenario 4	scenario 5
scenario 1	0.0416	0.0211	0.0576	0.2252

Table 3: Welfare losses associated to each scenario in comparison to the benchmark one.

According to Lucas (2003), the welfare gain of a change in policy from A to B is given by λ such as $u((1+\lambda)c_A) = u(c_B)$, where c_A and c_B stand for the good consumption of the representative agent under policy A and B and $u(c_A) < u(c_B)$. λ is expressed in units of a percentage of all consumption goods. Conversely, for example, we interpret the welfare losses of partial credibility as λ where λ satisfies $u(c_1) = u((1-\lambda)c_4)$ and c_1 and c_4 are the median consumption units at the end of the runs (i.e. at T = 800) in Scenarios 1 and 4.In Scenario 4, the lack of credibility yields to a decrease of 5.76% in the median good consumption.

4.2 What is the impact of imperfect communication?

The case of imperfect credibility occurs in Scenarii 2 and 3. In Scenario 2, we assume a single draw of the inflation expectation, with some noise σ_{ξ} around the true target, and households share the same inflation expectation. Inflation expectations are thus homogeneous, but the more noise there is, the further they can be from the target. In Scenario 3, each household draws its own inflation expectation around the true target, with some noise $\frac{\sigma_{\xi}}{n}$, so that average inflation expectation is equal to the target, but inflation expectations are heterogeneous. In that case, the more noise there is, the more scattered expectations are around the target and, hence, the more heterogeneous they are.

Thus, imperfect communication introduces volatility into the model's dynamics. That is clear from the outcomes of the simulations: inflation is on average closer to the target in Scenario 3 than it is in Scenario 1, probably because indexation coefficients are closer to 1. However, inflation in Scenario 3 exhibits greater volatility. Furthermore, unemployment rate is both higher and more volatile. In Scenario 2, macroeconomic outcomes are worse than in Scenario 1, both in terms of level and volatility. They are also worse than in Scenario 3¹⁷.

The econometric analysis provides further elements of comparison. When the target is imperfectly communicated, the learning environment globally favours convergence towards the macroeconomic objectives, but that role is less salient than in Scenario 1. Variability in learning coming from indexation behaviour affects both inflation and unemployment in Scenario 2, and inflation in Scenario 3, in each case in a stronger way than in Scenario 1. Those effects are especially strong in Scenario 2, in line with the worst macroeconomic performances we observe. However, variability in learning coming from substitution strategies does not impact the CB's

¹⁷ T-tests performed on both samples lead to rejecting the null hypotheses of equal inflation gap and unemployment rate between Scenarii 2 and 3, against the alternative ones of a greater inflation gap (t-stat=7.9, p-value=1e-15) and a higher unemployment rate (t-stat=8.6, p-value<2.2e-16) in Scenario 2.

objectives, either in Scenario 2 or in Scenario 3.

In what concerns monetary policy, its action on the two objectives is strongly disturbed. In Scenario 2, only a moderate reaction to inflation ($\phi_{\pi} < 1.5$) achieves a negative effect on inflation, and monetary policy does not affect unemployment. It should be remarked that average γ^k strategies are particularly low in that scenario. As those strategies define the responsiveness of demand to changes in interest rate (see Equations (25) and (26)), the consumption channel of monetary policy is less efficient in Scenario 2, than it is in Scenario 1. Interestingly, once again, the Taylor principle does not emerge as a desirable property of the Taylor rule. In a simulated version of the NK model, Fukac (2008) finds a similar result: if the CB and the private agents hold divergent inflation expectations, that creates a mismatch between the real interest rate expected by agents, which determines the evolution in aggregate demand, and the intended real interest rate, fixed by the CB. In that case, the CB has to react only in a moderate way to inflation, not to magnify the effects of that mismatch on macroeconomic volatility. Monetary policy exerts a stronger influence on employment in Scenario 3: as soon as $\phi_u > 0.5$, the unemployment rate falls when the CB reacts more strongly. Nevertheless, that drop comes at the expense of inflation stabilisation. Finally, noise in inflation expectations probably adds to variability in learning, and thus exacerbates heterogeneity in agents' behaviour, thereby explaining the worse performances in Scenarii 2 and 3.

Those results can be related to the debate on the potentially negative effect of transparency in the conduct of monetary policy (see Cornand & Baeriswyl (2010) for a review). Contributions such as Morris & Shin (2002) or Ueda (2009) argue that private agents are likely to focus too much on public information to form their own expectations. In the case of monetary policy, that means that agents may completely rely on the CB's announcements to expect inflation. Therefore, if the disclosed information is noisy, there is a risk that the effect of that public noise becomes amplified and macroeconomic performances worsen. In particular, i) if public information is very imprecise in comparison to agents' private information ((Woodford (2005) and Svensson (2007), *inter alia*), or ii) if private agents are not able to correctly assess the noise in public information (Dale et al. (2011)), the disclosure of public information can be really costly in terms of welfare. If we interpret the common noise ξ in Scenario 2 as the noise in public information, and the individual noise ξ_i/n in Scenario 3 as the noise in private information, our result confirms the above statements. Macroeconomic instability is worse when the announced target is highly imprecise regarding the true inflation objective than it is when individuals hold heterogeneous inflation expectations, but which are on average closer to the target. In Scenario 2, agents completely rely on the CB information ($\chi = 1$) and are, therefore, not aware that that information can actually be imperfect.

As a conclusion to this sub-section, we highlight the following proposition:

Proposition 2 Imperfect communication may be associated with two configurations regarding inflation expectations:

- 1. Heterogeneity in inflation expectations, i.e. a lack of coordination between individuals.
- 2. The misanchoring of inflation expectations (in the sense of coordination on a point far from the CB's objective), i.e. a lack of coordination between the CB and individuals.

Those two situations create more heterogeneous agents' behaviour, leading to macroeconomic instability and restricting the extent to which monetary policy manages to stabilize both inflation and unemployment. Nevertheless, it appears that coordination of expectations on a very noisy target results in the worst outcomes.

We now consider the question of credibility of the inflation target.

4.3 Consequences of partial credibility of the inflation target (Scenarios 4 and 5)

We now compare the outcomes in Scenario 4 (partial credibility of the announced inflation target) and in Scenario 5 (no credibility at all) with the benchmark case. It is clear that the less credible the inflation target, the further macroeconomic outcomes are from the CB's objectives, both in terms of level and volatility. As previously mentioned, Scenario 5 clearly exhibits the worst macroeconomic figures.

Surprisingly, in Scenario 4, heterogeneity of behaviour is higher than in Scenario 5, both as regards the substitution strategies and the indexation coefficients. However, macroeconomic outcomes are clearly better. That is especially the case as far as the inflation rate is concerned. This indicates that the anchoring of inflation expectations to the target is the primary determinant of macroeconomic stability, a result which comes from the way expectations are formed without a perfectly credible inflation target in the model. As agents also rely on past inflation trend, inflation expectations are partly driven endogenously by past inflation and, therefore, can become unanchored. In the model, as expectations patterns are exogenously fixed, monetary policy cannot directly influence them. The only way for policy makers to offset the situation is to drive the actual inflation dynamics back closer to the target. However, the results of the regression show that the conduct of monetary policy becomes more complicated when the inflation target is partially credible, and much more so even, in the absence of credibility. Variability in learning coming from the indexation strategies γ^w strongly affects inflation dynamics: endogenous expectations strengthen the impact of that variability on inflation. Furthermore, regression results indicate that small values of ϕ_{π} and ϕ_u negatively affect the inflation gap, whereas only strong coefficients in the Taylor rule decrease the unemployment rate. Therefore, the CB is faced with a strong trade-off, as confirmed in Table 2, in which a negative and significant correlation between the two objectives is displayed in Scenario 4. That correlation becomes even higher in case of no credibility at all (Scenario 5), as previously stressed. We conclude that partially endogenous expectations disturb the stabilizing power of monetary policy, which enables us to establish the following proposition:

We finally establish the following proposition:

Proposition 3 Credibility, which we measure as the degree of anchoring of private inflation expectations to the announced target, appears as the primary determinant of a successful monetary policy, both in terms of inflation and unemployment stabilization. Imperfect credibility produces unanchored and endogenous expectations, which highly disturb the ability of the CB to react to learning shocks affecting the economy, thereby creating a trade-off between the two objectives.

The crucial role played by credibility has already been pointed out in many contributions. De Grauwe (2011) notably shows how a CB can make the trade-off between its two objectives easier to face by enhancing the credibility of its explicit inflation target.

Finally, Boxplots 3 in Appendix B and the welfare losses reported in Table ?? confirm the above findings. We show how aggregate welfare (computed as the sum of individual utilities) evolves through time under each scenario. Clearly, the first scenario outperforms the four others, by allowing welfare to strongly increase and to stabilize at a high level, which provides an obvious sign of learning in our model. The second, third and fourth scenarii also exhibit an increasing trend in welfare. However, more variability remains at the end of the simulations, especially in the second and fourth ones. The last scenario is clearly the worst, in line with the higher unemployment rates we observe. On the other hand, welfare losses represent the percentage of consumption individuals lose in comparison to the benchmark case, in which expectations are well-anchored to the target (Scenario 1). Those findings are consistent with the above analysis.

5 Conclusion

Two issues play a primary role in the performances of an IT regime: the degree of imperfection and the degree of credibility of the inflation target. Previous contributions have highlighted how noise in public and private information can affect the conduct of monetary policy and deteriorate macroeconomic performance. Those results have been established in various analytical models, notably using the NK framework, which has become the workhorse for macroeconomic analysis in the field. The need for credibility has also been shown in learning models in which, however, the core structure remains close to that of the main framework. This paper is an attempt to revisit those issues using an ABM. This perspective allows us to consider heterogeneous and interacting agents which are engaged in a learning process, and, in consequence, to emphasize how crucial the interplay of learning mechanism and IT features is for IT performances. This is very much in line with the description of IT as "a framework designed for a world of learning" (King (2005)). Thanks to our simple model, we are able to assess how imperfect information and the lack of credibility of the inflation target can disturb the conduct of monetary policy, and worsen the resulting macroeconomic performances. Our main findings are as follows:

- A perfectly clear and credible inflation target makes the conduct of monetary policy easier. In that context, the Taylor principle does not emerge as a critical condition for macroeconomic stabilization, although hawkish reactions do better achieve monetary policy objectives.
- Noise in the CB's announcements can lead to i) heterogeneity in inflation expectations, i.e. a lack of coordination between individuals and ii) miscoordination of inflation expectations, i.e. a lack of coordination between the CB and individuals. In the two cases, such noise restricts the influence of the Taylor rule and introduces a trade-off between the objectives. The situation clearly worsens when agents rely totally on highly noisy public information, which obviously contributes to the recent debate on the need for transparency, set against the welfare costs of imperfect public information.
- If the inflation target is not completely credible, private expectations become endogenously driven by past inflation, which strongly disturbs the ability of the CB to react to shocks, and creates a steep trade-off between the two objectives. We therefore highlight the primary role of credibility in achieving both full-employment and inflation stability, very much in line with the findings of recent contributions in macroeconomic learning

models.

These promising results demonstrate the interest of using the agent-based framework to investigate macroeconomic dynamics under learning and bounded rationality, and call for further analysis in such a context. We are notably working on a version of our model, in which inflation expectations are made endogenous, according to various expectations schemes, in order to assess how the CB communication can influence those private expectations.

References

- Arifovic, J., Bullard, J. B. & Kostyshyna, O. (2007), Social learning and monetary policy rules, Working Papers 2007-007, Federal Reserve Bank of St. Louis.
- Arifovic, Y. (1995), 'Genetic algorithms and inflationary economies', Journal of Monetary Economics 36(1), 219–243.
- Blanchard, O. & Kiyotaki, N. (1987), 'Monopolistic Competition and the Effects of Aggregate Demand', The American Economic Review 77(4), pp. 647–666.
- Blinder, A. S., Ehrmann, M., Fratzscher, M., De Haan, J. & Jansen, D.-J. (2008), 'Central Bank Communication and Monetary Policy : a survey of theroy and evidence', *Journal of Economic Literature* 46(4), pp. 910–945.
- Brazier, A., Harrison, R., King, M. & Yates, T. (2008), 'The Danger of Inflating Expectations of Macroeconomic Stability: Heuristic Switching in an Overlapping-Generations Monetary Model', *International Journal of Central Banking* 4(2), pp. 219–254.
- Brenner, T. (2006), Agent learning representation: advice on modelling economic learning, in L. Tesfatsion & K. Judd, eds, 'Handbook of Computational Economic, vol. 2', North-Holland, chapter 18, pp. 895–847.
- Bullard, M. & Mitra, K. (2002), 'Learning about monetary policy rules', Journal of Monetary Economics 49(6), pp. 1105–1129.
- Calvo, G. (1983), 'Staggered prices in a utility maximizing framework', Journal of Monetary Economics 12, pp. 383–398.
- Canzian, J. (2009), Three essays in agent-based macroeconomics. Doctoral Thesis, University of Trento CIFREM.
- Cioppa, T. (2002), Efficient nearly orthogonal and space-filling experimental designs for highdimensional complex models. Doctoral Dissertation in philosophy in operations research, Naval postgraduate school.
- Colander, D., Howitt, P., Kirman, A., Leijonhufvud, A. & Mehrling, P. (2008), 'Beyond DSGE Models: Toward an Empirically Based Macroeconomics', American Economic Review 98(2), 236–40.

- Cornand, C. & Baeriswyl, R. (2010), 'Optimal monetary policy in response to supply inflation : the impact of central bank communication', *International Journal of Central Banking* **6**(2), pp. 31–52.
- Cornand, C. & Heinemann, F. (2008), 'Optimal degree of public information dissemination', *The Economic Journal* **118**(528), pp. 718–742.
- Dale, S., Orphanides, A. & Osterholm, P. (2011), 'Imperfect Central Bank Communication: Information versus Distractions', *International Journal of Central Banking* 7(2), pp. 3–39.
- De Grauwe, P. (2011), 'Animal spirits and monetary policy', Economic Theory 47, 423–457.
- Delli Gatti, D., Gaffeo, E. & Gallegati, M. (2010), 'Complex agent-based macroeconomics: a research agenda for a new paradigm', *Journal of Economic Interaction and Coordination* **5**(2), pp. 111–135.
- Delli Gatti, D., Gaffeo, E., Gallegati, M. & Palestrini, A. (2005), 'The Apprentice Wizard: Monetary Policy, Complexity And Learning', New Mathematics and Natural Computation (NMNC) 1(01), 109–128.
- Demertzis, M. & Viegi, N. (2009), 'Inflation targeting : a framework for communication', *The B.E. Journal of Macroeconomics* **99**(1).
- Eusepi, S. & Preston, B. (2010), 'Central bank communication and expectations stabilization', American Economic Association 2(3), pp. 235–271.
- Evans, G. W. (2005), Comment on imperfect knowledge, inflation expectations and monetary policyï£; by athanasios orphanides and john c. williams, *in* B. B. S. & M. Woodford, eds, 'Inflation Targeting', University of Chicago Press.
- Evans, G. W. & Honkapohja, S. (2001), Learning and Expectations in Macroeconomics, Princeton University Press.
- Faust, J. & Svensson, L. (2001), 'Transparency and Credibility: Monetary Policy with Unobservable Goals', International Economic Review 42(2), pp. 369–397.
- Friedman, M. (1957), A Theory of the Consumption Function, Princeton University Press.
- Fukac, M. (2008), Heterogeneous Expectations, Adaptive Learning, and Forward-Looking Monetary Policy, Reserve Bank of New Zealand Discussion Paper Series DP2008/07, Reserve Bank of New Zealand.
- Gaffeo, E., Delli Gatti, D., Desiderio, S. & Gallegati, M. (2008), 'Adaptive Microfoundations for Emergent Macroeconomics', *Eastern Economic Journal* **34**(4), 441–463.
- Gali, J. (2008), Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework, Princeton University Press.
- Giannoni, M. Michael Woodford, M. (2004), Optimal Inflation-Targeting Rules, in 'The Inflation-Targeting Debate', NBER Chapters, National Bureau of Economic Research, Inc, pp. 93–172.
- Goupy, J. & Creighton, L. (2007), Introduction to Design of Experiments with JMP Examples, Third Edition, SAS Institute Inc., Cary, NC, USA.

- Holland, J., Goldberg, D. & Booker, L. (1989), 'Classifier Systems and Genetic Algorithms', Artificial Intelligence 40, 235–282.
- King, M. (2005), 'Monetary Policy : Practice ahead of Theory'. Cass Business School, 17 May 2005, London.
- Kirman, A. (2011), 'Learning in Agent-based Models', *Eastern Economic Journal* 37(1), 20–27.
- Leijonhufvud, A. (2006), Agent-based Macro, *in* L. Tesfatsion & K. Judd, eds, 'Handbook of Computational Economic, vol. 2', North-Holland, chapter 36, pp. 1625–1646.
- Lengnick, M. (2011), Agent-Based Macroeconomics: A Baseline Model, Economics Working Papers 2010,10, Christian-Albrechts-University of Kiel, Department of Economics.
- Lipinska, A. & Yates, T. (2010), How clarity about the inflation objective anchors inflation expectations? mimeo, Bank of England.
- Lucas, R. (2003), 'Macroeconomic Priorities', American Economic Review 93(1), pp. 1–14.
- Morris, S. & Shin, H. (2002), 'Social value of public information', *American Economic Review* **92**(5), pp. 1521–1534.
- Oeffner, M. (2008), Agent based keynesian macroeconomics an evolutionary model embedded in an agent - based computer simulation. Doctoral dissertation, Bayerische Julius -Maximilians Universitat, Wurzburg.
- Orphanides, A. & Williams, J. C. (2005), Imperfect knowledge, inflation expectations and monetary policy, in B. Bernanke & M. Woodford, eds, 'Inflation Targeting', University of Chicago Press.
- Orphanides, A. & Williams, J. C. (2007), Inflation Targeting under Imperfect Knowledge, in F. S. Mishkin & K. Schmidt-Hebbel, eds, 'Monetary Policy Under Inflation Targeting', Vol. XI, Banco central de Chile, Santiago, Chile.
- Raberto, M., Teglio, A. & Cincotti, S. (2008), 'Integrating Real and Financial Markets in an Agent-Based Economic Model: An Application to Monetary Policy Design', *Computational Economics* 32, pp. 147–162.
- Roos, M. W. & Schmidt, U. (2011), The importance of time series extrapolation for macroeconomic expectations, Kiel Working Papers 1723, Kiel Institute for the World Economy.
- Rotemberg, J. & Woodford, M. (1998), An Optimization-Based Econometric Framework for the Evaluation of Monetary Policy: Expanded Version, NBER Technical Working Papers 0233, National Bureau of Economic Research, Inc.
- Sanchez, S. (2005), Nolh designs spreadsheet . Software available online via http://diana.cs.nps.navy.mil/SeedLab/.
- Sargent, T. (1993), Bounded Rationality in Macroeconomics, Oxford University Press.
- Simon, H. (1971), The Theory of Problem Solving, in 'IFIP Congress (1)', pp. 261–277.
- Svensson, L. (1999), 'Inflation Targeting as a Monetary Policy Rule', Journal of Monetary Economics 43(3), pp. 607–654.

- Svensson, L. (2007), Optimal inflation targeting: Further developments of inflation targeting, in F. S. Mishkin & K. Schmidt-Hebbel, eds, 'Monetary Policy Under Inflation Targeting', Vol. XI, Banco central de Chile, Santiago, Chile.
- Svensson, L. (2009), 'Transparency under Flexible Inflation Targeting: Experiences and Challenges', *Economic Review* 1, 5–44.
- Svensson, L. E. & Woodford, M. (2004), Implementing Optimal Policy through Inflation-Forecast Targeting, in 'The Inflation-Targeting Debate', NBER Chapters, National Bureau of Economic Research, Inc, pp. 19–92.
- Taylor, J. (1993), 'Discretion versus policy rules in practice', Carnegie-Rochester Conference Series on Public Policy 39(1), 195–214.
- Tesfatsion, L. (2006), Agent-Based Computational Economics: A Constructive Approach to Economic Theory, in L. Tesfatsion & K. Judd, eds, 'Handbook of Computational Economic, vol. 2', North-Holland, chapter 16, pp. 831–894.
- Tesfatsion, L. & Judd, K. L. (2006), Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics, North-Holland.
- Tetlow, R. J. & von zur Muehlen, P. (2001), 'Robust monetary policy with misspecified models: Does model uncertainty always call for attenuated policy?', *Journal of Economic Dynamics & Control* 25, pp. 911–949.
- Ueda, K. (2009), Central Bank Communication and Multiple Equilibria, IMES Discussion Paper Series 09-E-05, Institute for Monetary and Economic Studies, Bank of Japan.
- Walsh, C. (2003), Monetary Theory and Policy, the MIT Press.
- Walsh, C. (2006), Transparency, Flexibility and Inflation Targeting, in F. Mishkin & K. Schmidt-Hebbel, eds, 'Monetary Policy under Inflation Targeting', Central Bank of Chile.
- Walsh, C. (2010), Transparency, the Opacity Bias and Optimal Flexible Inflation Targeting. mimeo, Nov.
- Woodford, M. (2003), Interest and Prices : Foundations of a Theory of Monetary Policy, Princeton University Press.
- Woodford, M. (2005), 'Central bank communication and policy effectiveness', *Proceedings* Aug. Federal Reserve Bank of Kansas City.
- Yıldızoğlu, M. (2002), 'Competing R&D Strategies in an Evolutionary Industry Model', Computational Economics 19(1), 51–65.
- Yıldızoğlu, M., Sénégas, M.-A., Salle, I. & Zumpe, M. (2011), Learning the optimal buffer-stock consumption rule of Carroll, Cahiers du gretha, Groupe de Recherche en Economie Théorique et Appliquée.

A Details of the way parameters have been set

Table 4 gives the values of the parameters explored in the simulations. Those values have been generated using the design of experiment proposed by Cioppa (2002). The Excel sheet which provides the corresponding experimental points up to 29 parameters can be found at : http://diana.cs.nps.navy.mil/seedlab/software.html (see Sanchez (2005)).

Parameters	level of learning	ρ	σ_{mutK}	σ_{mutW}	ϕ_{π}	ϕ_u	$\sigma_{m{\xi}}/\chi$
min	0	0	0.05	0.05	0	0	0.001/0.1
max	2	0.9	0.4	0.4	2	1	0.05/0.9
Experiments							
1	1	0.9	0.33	0.18	0.50	0.90	0.029/0.6
2	0	0.45	0.36	0.25	0.00	0.30	0.032/0.6
3	0	0.45	0.07	0.14	1.30	0.80	0.05/0.9
4	0	0.45	0.16	0.40	1.10	0.10	0.038/0.7
5	2	0.9	0.20	0.09	0.60	0.00	0.041/0.8
6	2	0.45	0.18	0.33	0.10	0.80	0.044/0.8
7	1	0	0.40	0.16	1.80	0.40	0.047/0.9
8	1	0.9	0.31	0.38	1.60	0.60	0.035/0.7
9	1	0.45	0.23	0.23	1.00	0.50	0.026/0.5
10	1	0	0.12	0.27	1.50	0.10	0.022/0.5
11	2	0.9	0.09	0.20	2.00	0.70	0.019/0.4
12	2	0.45	0.38	0.31	0.80	0.20	0.001/0.1
13	2	0.45	0.29	0.05	0.90	0.90	0.013/0.3
14	1	0	0.25	0.36	1.40	1.00	0.01/0.3
15	0	0.45	0.27	0.12	1.90	0.30	0.007/0.2
16	1	0.9	0.05	0.29	0.30	0.60	0.004/0.2
17	1	0	0.14	0.07	0.40	0.40	0.016/0.4

Table 4: Design of experiments (typically an Orthogonal Latin Hypercube) for 7 factors/parameters – the last column is irrelevant for Scenarii 1 and 5, the values of σ_{ξ} are used for Scenarii 2 and 3 and the values of χ are set in Scenario 4.

B Further simulations results

Figure 3: Evolution of aggregate welfare in the five scenarii – outliers are ruled out.

M_{1} M_{2} <	cenario	1 Sem n Sar	scenal in fCanSar	rio 2	scena $in fCanSan$	rio 3	scena. $in fCanSan$	rio 4	scena $in fCan Sar$	rio 5 unemn Sar
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		16***	111 Janpadi 30 03	1114***	thedap fill	0 160***	hcdnp (111	0 002***	npcdnpcfnn	ibcdillarin
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\supset	210 19)	3e-03 (0 11)	0.114	00-90 (12 U)	(10 08)	0.030	0.093	(-30, 16)	(91.00/)
-0.04 -0.043 0.03 -0.044 0.012 0.012 0.013 0.011 0.028 0.0119^{***} 0.0108^{***} 0.0119^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0108^{***} 0.0101^{***} 0.0118^{***} 0.0118^{***} 0.0118^{***} 0.0118^{***} 0.014^{***} 0.004^{***} 0.014^{***} 0.014^{***} 0.004^{***} 0.014^{****} 0.004^{***} 0.0014^{****} 0.0014^{****} 0.0014^{****} 0.0014^{****} 0.0014^{*****} 0.0014^{*****} $0.0001^$	-	(71-91)	(11.0)	0.004	0.01)	0.067	(00-91)	(cu-a)) 0.040***	(< 26-10)	(<26-10)
		-7e-04	-0.0042***	-0.024	3e-03	-0.067 .	-0.033***	0.242^{***}	0.075***	-0.121**
11* $2e-05$ -0129 $-8e-04$ 0.202^{***} -0.119^{***} 33) (0.99) (0.143) (0.186) $(3e-04)$ $(2e-08)$ (-6) 28* 0.0014^{*} -0.025 $-4e-04$ 0.012 0.008^{***} -6 33) (0.631) (0.22) (0.146) (0.426) $(4e-08)$ -6 $*^{**}$ $-3e-04$ 0.052 (0.041) $(3e-04)$ $(2e-08)$ -6 0.011^{***} $-3e-04$ 0.053 0.001^{*} -0.183^{***} 0.101^{****} -6 0.01^{**} 0.003 $4e-04^{**}$ 0.037^{***} 0.014^{***} -0.014^{****} 0.004^{***} 0.004^{***} 0.004^{***} 0.004^{***} 0.004^{***} 0.004^{***} 0.006^{***} 0.006^{***} 0.006^{***} 0.001^{***} 0.001^{****} 0.001^{***} 0.001^{***} 0.001^{***} 0.001^{***} 0.001^{***} 0.000^{***} 0.000^{***} 0.000^{***} 0.000^{****} 0.000^{***} 0		(0.966)	(0.007)	(0.648)	(0.18)	(0.1)	(2e-08)	(1e-06)	(2e-06)	(0.006)
39) (0.99) (0.143) (0.186) $(3e-04)$ $(2e-08)$ $(2e-08)$ 28* 0.0014^* -0.025 $-4e-04$ 0.012 $0.008***$ -1 19) (0.042) (0.22) (0.146) (0.128) $(4e-08)$ -1 $***$ $-3e-04$ 0.062 0.001^* $-0.183***$ $0.101****$ -1 0.07 $7e-04$ 0.053 0.0117 (0.426) $(10.11)***$ -1 0.17 $7e-04$ 0.037 $4e-04$ $4e-04$ $(1e-08)$ $0.011***$ $0.01***$ 0.001^* 0.177 (0.988) $(1e-08)$ $0.014***$ $0.01***$ 0.001^* $0.028***$ $0.014***$ $0.0014***$ $0.0014***$ 0.001^* (0.241) (0.640) (0.843) $(1e-07)$ $(8e-03)$ $(1e-08)$ $***$ 0.001^* 0.001^* 0.025^*** 0.001^*** 0.005^*** 0.001^*** $***$ 0.001^* <		0.11^{*}	2e-05	-0129	-8e-04	0.202^{***}	-0.119***	0.66^{***}	0.327^{***}	-1.146^{***}
28* 0.0014^* -0.025 $-4e-04$ 0.012 0.008^{***} -1 119) (0.042) (0.22) (0.146) (0.426) $(4e-08)$ $(-6-08)$ 110 (0.041) (0.22) (0.141) $(3e-04)$ $(2e-08)$ $(-6-08)$ (0.531) (0.331) (0.631) (0.317) (0.941) $(3e-04)$ $(2e-08)$ $(-6-08)$ (-177) (0.37^{***}) -1 (1.651) (0.596) (0.117) (0.011) $(3e-04)$ $(2e-08)$ $(1e-07)$ $(3e-03)$ $(1e-08)$ <td< td=""><td></td><td>(0.039)</td><td>(0.99)</td><td>(0.143)</td><td>(0.186)</td><td>(3e-04)</td><td>(2e-08)</td><td>(<2e-16)</td><td>(<2e-16)</td><td>(<2e-16)</td></td<>		(0.039)	(0.99)	(0.143)	(0.186)	(3e-04)	(2e-08)	(<2e-16)	(<2e-16)	(<2e-16)
		-0.028*	0.0014^{*}	-0.025	-4e-04	0.012	0.008^{***}	-0.192^{***}	-0.017*	-0.027
*** $-3e-04$ 0.062 $0.001*$ $-0.183***$ $0.101***$ -1 03 (0.631) (0.391) (0.041) $(3e-04)$ $(2e-08)$ $(1$ 45 $7e-04$ 0.058 $-4e-04$ $4e-04$ $0.037***$ $0.$ 45 (0.596) (0.117) (0.041) $(3e-03)$ $(1e-08)$ $0.037***$ $0.$ 45 $0.001*$ 0.033 $4e-04**$ $0.037***$ $0.014***$ $0.037***$ $0.014***$ $0.037***$ $0.014***$ $0.037***$ $0.014***$ $0.037***$ $0.014***$ $0.037***$ $0.014***$ $0.037***$ $0.014***$ $0.014***$ $0.014***$ $0.014***$ $0.014***$ $0.014***$ $0.014***$ $0.014***$ $0.0014****$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ $0.0014***$ <td< td=""><td></td><td>(0.019)</td><td>(0.042)</td><td>(0.22)</td><td>(0.146)</td><td>(0.426)</td><td>(4e-08)</td><td>(<2e-16)</td><td>(0.022)</td><td>(0.139)</td></td<>		(0.019)	(0.042)	(0.22)	(0.146)	(0.426)	(4e-08)	(<2e-16)	(0.022)	(0.139)
	0	152^{***}	-3e-04	0.062	0.001^{*}	-0.183***	0.101^{***}	-0.784***	-0.275***	0.774^{***}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.003)	(0.631)	(0.391)	(0.041)	(3e-04)	(2e-08)	(<2e-16)	(<2e-16)	(<2e-16)
45) (0.596) (0.117) (0.177) (0.988) $(1e-08)$ *** $-0.001***$ 0.003 $4e-04**$ $-0.028***$ $-0.014***$ $-(6-08)$ 04 $(6e-09)$ (0.843) $(1e-07)$ $(8e-03)$ $(4e-08)$ $(1e-08)$ $***$ $-0.002***$ $-0.153***$ $-0.014***$ $-0.014***$ $-(6-04)$ $(1e-07)$ $***$ $-0.001*$ $-0.1153***$ $-0.012***$ $-0.014***$ $-(6-04)$ $(124)^{**}$ $-(6-04)^{**}$ 16 $(2e-06)$ $(<2e-16)$ (0.026) $(<2e-16)$ $(3e-06)$ $(1e-08)$ 16 (0.048) $(2e-10)$ (0.026) $(<2e-16)$ $(3e-06)$ $(1e-08)$ 115 (0.048) $(2e-16)$ (0.028) (0.479) $(0.05***)$ $(0.005***)$ 115 $0.005***$ $0.491***$ $0.001*$ 0.053 $0.033***$ $(1e-08)$ 115 $0.005***$ $0.491***$ $0.001*$ 0.053 $(0.005***)$ $(1e-08)$ $0.049***$ $2.429***$ $0.001*$ (0.479) (0.479) $(2e-06)$ $0.049***$ $2.429***$ $0.001*$ (0.138) $(2e-06)$ NA $(2e-16)$ 115 $0.049***$ $2.429***$ 0.0011 $(7e-04)$ NA $(2e-16)$ 16 <td></td> <td>0.07</td> <td>7e-04</td> <td>0.058</td> <td>-4e-04</td> <td>4e-04</td> <td>0.037^{***}</td> <td>0.184^{***}</td> <td>-0.063***</td> <td>0.16^{***}</td>		0.07	7e-04	0.058	-4e-04	4e-04	0.037^{***}	0.184^{***}	-0.063***	0.16^{***}
**** $-0.001***$ 0.003 $4e-04**$ $-0.028***$ $-0.014***$ -1 041 $(6e-09)$ (0.843) $(1e-07)$ $(8e-03)$ $(4e-08)$ $($ $***$ $-0.002***$ $-0.153***$ $-6e-04$ $-0.123***$ $-0.004***$ $ 16$ $(2e-06)$ $(22e-16)$ $(2-16)$ $(2e-06)$ $(3e-06)$ $($ $***$ $-0.001*$ $-0.101***$ $-6e-04*$ $0.124**$ $-0.005***$ $ 16$ (0.048) $(2e-10)$ (0.269) (0.026) $(3e-06)$ $($ 115 (0.048) $(2e-10)$ (0.269) (0.49) (0.479) $(3e-06)$ $($ $0.05***$ $0.049**$ $2.429**$ $0.005**$ $($ <td></td> <td>(0.545)</td> <td>(0.596)</td> <td>(0.117)</td> <td>(0.177)</td> <td>(0.988)</td> <td>(1e-08)</td> <td>(3e-11)</td> <td>(4e-05)</td> <td>(7e-07)</td>		(0.545)	(0.596)	(0.117)	(0.177)	(0.988)	(1e-08)	(3e-11)	(4e-05)	(7e-07)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.037^{***}	-0.001***	0.003	$4e-04^{**}$	-0.028***	-0.014^{***}	-0.073***	0.023^{***}	0.146^{***}
*** -0.002^{***} -0.153^{***} $-6e-04$ -0.123^{***} 0.004^{***} -1 16) $(2e-06)$ $(<2e-16)$ $(<2e-16)$ $(3e-06)$ $(<<$		(3e-04)	(6e-09)	(0.843)	(1e-07)	(8e-03)	(4e-08)	(<2e-16)	(3e-04)	(<2e-16)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l '	0.15^{***}	-0.002***	-0.153^{***}	-6e-04 .	-0.123***	0.004^{***}	-0.196^{***}	0.019^{***}	-0.16^{***}
*** $-0.001*$ $-0.101***$ $-6e-04*$ $0.124***$ $-0.005***$ 16) (0.048) $(2e-10)$ $(2e-10)$ $(5e-10)$ $(5e-10)$ (0.026) $(-2e-16)$ $(-2e-16)$ $(5e-10)$ $(5e-10)(115)$ $(0.05***$ $0.49)$ (0.479) $(0.38***$ $(0.38***)(115)$ $(0.05***$ $0.491***$ $0.001*$ 0.053 $0.038***$ $(0.38***)(115)$ $(0.05***$ $0.491***$ $0.001*$ 0.053 $0.038***$ $(0.38***)(115)$ $(0.005***)$ $0.491***$ $0.001*$ 0.053 $0.038***$ $(0.38***)(115)$ $(0.049***)$ $2.429***$ $6e-03***$ 0.075 (0.138) $(2e-06)NA$ $0.049***$ $2.429***$ $6e-03***$ $0.677***$ NA $NA(<2e-16)$ $(<2e-16)$ (0.001) $(7e-04)$ NA NA NA $-0.014***$ $-1(-2e-16)$ $(<2e-16)$ (0.001) $(7e-04)$ $(7e-04)$ $(2e-16)***$ $12.28***$ $36.39***$ $2.125*$ $23.34***$ $40.77***$ $(-2e-16)$ $(-2e-1$	Ľ	<2e-16)	(2e-06)	(<2e-16)	(0.091)	(<2e-16)	(3e-06)	(<2e-16)	(2e-05)	(<2e-16)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	\cup	.141***	-0.001^{*}	-0.101^{***}	-6e-04*	0.124^{***}	-0.005***	-0.042 .	0.026^{***}	-0.082***
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ċ	<2e-16)	(0.048)	(2e-10)	(0.026)	(<2e-16)	(5e-10)	(0.057)	(1e-05)	(1e-06)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.02	5e-04	0.045	-3e-04	0.026	0.005^{***}	0.361^{***}	0.017	0.146^{***}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(0.626)	(0.718)	(0.269)	(0.49)	(0.479)	(3e-09)	(<2e-16)	(0.535)	(8e-04)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-0.0115	0.005^{***}	0.491^{***}	0.001^{*}	0.053	0.038^{***}	0.008	0.242^{***}	-0.017
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(0.163)	(2e-13)	(<2e-16)	(0.028)	(0.138)	(2e-06)	(0.83)	(<2e-16)	(0.696)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NA	0.049^{***}	2.429^{***}	$6e-03^{***}$	0.677^{***}	NA	NA	NA	NA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(<2e-16)	(<2e-16)	(0.001)	(7e-04)				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		NA	NA	NA	NA	NA	-0.014***	-0.091***	NA	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							(<2e-16)	(1e-12)		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\sim	3.56^{***}	12.28^{***}	36.39^{***}	2.125^{*}	23.34^{***}	40.77***	54.65^{***}	30.73^{***}	120.2^{***}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\smile	<2e-16	(<2e-16)	(<2e-16)	(0.016)	(<2e-16)	(<2e-16)	(<2e-16)	(<2e-16)	(<2e-16)
16) (<2e-16) (<2e-1		354	6969	821	8918	643	1782	200	653	329
	Ľ	<2e-16)	(<2e-16)	(< 2e-16)	(<2e-16)	(<2e-16)	(<2e-16)	(<2e-16)	(<2e-16)	(<2e-16)
$181 \qquad 0.146 \qquad 0.133 \qquad 0.048 \qquad 0.188 \qquad 0.2466 \qquad 0.2466 \qquad 0.188 \qquad 0.2466 \qquad $		0.181	0.146	0.133	0.048	0.188	0.2466	0.288	0.108	0.319

Cahiers du GREThA Working papers of GREThA

GREThA UMR CNRS 5113

Université Montesquieu Bordeaux IV Avenue Léon Duguit 33608 PESSAC - FRANCE Tel : +33 (0)5.56.84.25.75 Fax : +33 (0)5.56.84.86.47

http://gretha.u-bordeaux4.fr/

Cahiers du GREThA (derniers numéros – last issues)

- 2012-03 : MOUYSSET Lauriane, DOYEN Luc, JIGUET Frédéric, How does the economic risk aversion affect biodiversity?
- 2012-04 : CARRINCAZEAUX Christophe, CORIS Marie, *The Decision-Making Process of Relocations:* What, Where, How and Why?
- 2012-05 : MONTOBBIO Fabio, STERZI Valerio, The globalization of technology in emerging markets: A gravity model on the determinants of international patent collaborations
- 2012-06 : CARRINCAZEAUX Christophe, GASCHET Frédéric, Knowledge and diversity of innovation systems: a comparative analysis of European regions
- 2012-07 : STERZI Valerio, Academic patent value and knowledge transfer in the UK: Does patent ownership matter?
- 2012-08 : FERRARI Sylvie, LAVAUD Sébastien, PEREAU Jean-Christophe, *Critical natural capital, ecological resilience and sustainable wetland management: a French case study.*
- 2012-09 : EPICOCO Marianna, Knowledge patterns and sources of leadership: mapping the semiconductor miniaturization trajectory
- 2012-10 : EPICOCO Marianna, OLTRA Vanessa, SAINT JEAN Maïder, Mapping the scientific knowledge of the Green Chemistry community
- 2012-11 : LALANNE Aurélie, POUYANNE Guillaume, 10 ans de métropolisation en économie : une approche bibliométrique
- 2012-12 : BONIN Hubert, La place lyonnaise et le démarrage de la deuxième révolution bancaire (1848-1870)
- 2012-13 : BECUWE Stéphane, BLANCHETON Bertrand, The dispersion of customs tariffs in France between 1850 and 1913: discrimination in trade policy
- 2012-14 : OLTRA Vanessa, SAINT JEAN Maïder, Les trajectoires régionales d'innovation dans la chimie verte : une application au cas de l'Aquitaine
- 2012-15 : SALLE Isabelle, YILDIZOGLU Murat, SENEGAS Marc-Alexandre, Inflation targeting in a learning economy: An ABM perspective

La coordination scientifique des Cahiers du GREThA est assurée par Sylvie FERRARI et Vincent FRIGANT. La mise en page est assurée par Anne-Laure MERLETTE.