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Résumé 

L'exploration des modèles de simulation informatique s'effectue au prix d'un coût en termes 

de temps de calcul d'autant plus élevé que le modèle comporte un grand nombre de 

paramètres. L'approche la plus courante en économie repose sur une exploration aléatoire, 

notamment grâce à des simulations Monte Carlo, et des outils de modélisation 

économétrique basiques pour approximer les propriétés des modèles de simulation 

informatique. Cette contribution a pour but d'expliquer comment utiliser une méthode 

beaucoup plus parcimonieuse, fondée sur un échantillonnage efficace de l'espace des 

paramètres – un plan d'expériences, associée à un métamodel approprié – un modèle de 

krigeage. Nous analysons deux modèles économiques simples en utilisant cette approche 

pour illustrer les possibilités que cette dernière offre. Notre annexe fournit un fragment de 

code informatique du logiciel R-project qui peut être utilisé pour appliquer cette approche à 

d'autres modèles.  
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Efficient Sampling and Metamodeling for Computational
Economic Models

Isabelle Salle∗ & Murat Yıldızoğlu,∗

September 14, 2012

Abstract

Extensive exploration of simulation models comes at a high computational cost, all the
more when the model involves a lot of parameters. Economists usually rely on random explo-
rations, such as Monte Carlo simulations, and basic econometric modelling to approximate
the properties of computational models. This paper aims at providing guidelines for the use
of a much more parsimonious method, based on an efficient sampling of the parameters space
– a design of experiments (DOE), associated with a well-suited metamodel – kriging. We
analyze two simple economic models using this approach to illustrate the possibilities offered
by it. Our appendix gives a sample of the R-project code that can be used to apply this
method on other models.

Key-words – Computational Economics; Exploration of Agent-Based Models; Design of
Experiments; Metamodeling.

JEL codes – C61; C63; C80; C90.

1 Introduction
Computational models have become a widely used tool in economic research, broadly named
as agent-based computational economics. They have been notably applied to the investigation
of markets, social dynamics, technological competition and learning dynamics, industrial dy-
namics and firms strategies, exchange or stock markets, see the works collected in Tesfatsion
& Judd (2006) and Miller & Page (2007). Those models are highly non-linear, and gener-
ally do not allow for the derivation of analytical solutions. Intensive sensitivity analyses are
required to investigate the behavior of those models, in order to understand their proper-
ties, to discriminate between key parameters and other ones, to select optimal configurations
regarding a predefined criterion, etc. However, as soon as the model involves many param-
eters, with wide variation domains, the computational cost of those analyses dramatically
increases and may become prohibitive. For example, with 10 parameters, each of them hav-
ing 5 potential levels, we need almost 10 million of simulations to cover all configurations,
and even more if the model is not deterministic and involves replications. The common
solution in economics is to use Monte Carlo simulations, i.e. to launch a high number of
randomly drawn simulations (typically several thousands) to get a representative sample of
the mapping between the parameters and the model’s dynamics.

In this paper, we argue that a much more efficient way of doing can be obtain through
the use of a design of experiments (hereafter, DoE), coupled with an appropriate model of

∗GREThA (UMR CNRS 5113), Université de Bordeaux, Avenue Léon Duguit, F-33608 PESSAC, Corresponding
author: Murat Yıldızoğlu yildi@u-bordeaux4.fr
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results analysis (named a metamodel). Basically, DoE allows to minimize the sample size
of parameter configurations under the constraint on their representativeness. Based on the
data collected through that sample, a metamodel is estimated, in order to approximate the
true model, which connects the parameters to the variables of interest. The DoE has to be
performed regarding the metamodel.

This method is very common in other scientific fields, such as industry, chemistry, elec-
tronic, biology, physics, computer science... (see for example Goupy & Creighton (2007)), but
is almost unknown in economics: to our knowledge, the only applications are Oeffner (2008),
Yıldızoğlu et al. (2012) and Salle et al. (2012). This paper aims at providing guidelines to
apply this method to economic computational models. Section 2 presents the foundations
of this method and focuses on the kriging-based metamodelling approach. This approach is
more recent and very innovative in economics, and has interesting features regarding the re-
sults analysis. Section 3 then provides two applications of the method to two basic economic
models. Section 4 concludes.

2 Method
This section extensively presents the analytical backgrounds of the kriging-based metamodel-
ing technique and the associated DoE, and highlights several potential pitfalls in the modeling
choices as well as the main available applications of this approach.

2.1 Preliminary definitions
Let {x1, ..., xk}, k ≥ 1 be the k parameters of the model. The parameters are called factors
(or inputs). The variation domain of each factor is the set of all possible values for this
factor. Let D ⊂ Rk be the experimental domain, i.e. the k-dimensional space of the variation
domains of the k factors. An experimental point (or point) xi is a 1×k ∈ D vector, which is a
point of the experimental domain (a particular configuration of the factor values). The DoE
is the n × k matrix of the n experimental points, which are selected for the sample. Each
column represents a factor and each row represents an experimental point. The DoE is thus
denoted byX ≡ {x1, ...,xn} ∈Mn,k(R). An experiment (or simulation) is a run of the model,
with a particular setup xg, g = 1, .., k. Finally, let y : x = (x1, ..., xk) ∈ D ∈ Rk → y(x) be
the response variable.

The method we provide aims at efficiently choosing the points X, and approximating the
true model y by a metamodel Y (see Wang & Shan (2007)).

2.2 How to choose the experiments?
At which points {x1, ...,xn} should the response y be evaluated? The choice of the experi-
mental points turns out to be closely related to the choice of the metamodel, i.e. the choice
of the form of Y . Basically, two alternative methods are available (see for example Jourdan
(2005)). The first relies on widely used OLS regressions; the second, on which we focus, is
based on an efficient interpolation model.

2.2.1 The classical approach

One can combine a classical DoE with the OLS estimation of a second-order polynomial
model (possibly including second-order interactions):

Y (x) = β0 +

n∑
i=1

βixi +

n∑
j=1

βjx
2
j +

n∑
i=1

∑
j>i

βi,jxixj + ε (1)

where ε is a usual error term. Classical DoE are factorial type DoE (see for example Box
& Draper (1987)). They are very simple to generate and optimal for estimating models
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(a) A classical DoE (b) An uniform DoE

Figure 1: Examples of DoE (3 factors, 8 points, source: Goupy & Creighton (2007))

of form (1). However, they put experimental points at the extremities of the experimental
domain (see Figure 1a). Consequently, they are not adapted if the response is irregular over
the domain. We should use those DoE only if the response is expected to be smooth on
the entire domain, or if we investigate only a restricted domain, on which we can locally
approximate the response with a smooth function. Nevertheless, Iman & Helton (1988) find
that this approach is useful for ranking the relative influence of the factors on the response,
even if the model (1) is not able to adequately represent the complex response surface.

2.2.2 The Kriging-based approach

A more robust approach is based on a model of statistical interpolation, namely a kriging
model1. It is particularly relevant for the analysis of computer simulations, which can be
highly complex.

Form of the metamodel The response y is optimally predicted through the stochastic
process Y (the metamodel):

Y (x) = µ(x) + Z(x) (2)

where µ : x ∈ D ⊂ Rk → µ(x) ≡
∑l

j=1 βjfj(x) ∈ R, l > 0, is the global trend of the
model, composed by predetermined functions fj and a vector β ≡ {βj}1,...l of coefficients, to
be estimated. Z is a stochastic process, representing local deviations of the model from the
global trend µ (see Figure 2). The metamodel is said to be global, as it is defined over the
whole experimental domain D.

Most of the time, Z is assumed to be second-order stationary, with zero mean, and
a variance given by C : (u, v) ∈ D2 → σ2R(u, v), with σ2 a scale parameter called the
process variance. The correlation function R is a n × n matrix, whose (i, j) element is
corr (Z(xi), Z(xj)). Kriging assumes that the closer points xi and xj , the higher the corre-
lation between Z(xi) and Z(xj), and the higher the correlation between the responses y(xi)
and y(xj). That is why kriging is said to be a spatial estimator. That assumption translates
into the form of the correlation R. In practice, an exponential function is often used and the
(i, j) element of R is computed as:

corr[Z(xi), Z(xj)] = exp

− k∑
g=1

θg | xi,g − xj,g |

 (3)

Let θ ≡ {θ1, ..., θk} be the 1 × k vector, where θg ≥ 0, g = 1, ..., k, quantifies the relative
importance of factor g, and xg,i denotes the value of input g in input combination i. The

1See the pioneer work of Matheron (1963), see also Sacks et al. (1989), van Beers & Kleijnen (2004), Roustant
et al. (2010). The name refers to the South African mining engineer Krige.
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Figure 2: Ordinary kriging metamodel: µ(x) = µ̄ (source: Jourdan (2005))

higher θg, the lower the correlation between the responses, and the smaller the importance of
factor g (see van Beers & Kleijnen (2004, p. 145)). We effectively note that the correlation
between responses decreases as the distance between points increases, for any given value of
θg.

The absolute value in (3), representing the distance between two points, can also be
replaced by the squared differences (xg,i − xg,j)

2 to obtain a smoother process (Gaussian
correlation).

Estimation of the metamodel Parameters to be estimated are the l coefficients β,
the vector of k coefficients θ and σ2. The kriging model estimation involves two steps (Sacks
et al. (1989)).

First, the trend coefficients β are estimated using generalized least squares (GLS): β̂ =
(F ′R−1F )−1F ′R−1y. We define F ≡ (f(x1)

′, ..., f(xn)′)′ as the so-called n× l experimental
matrix and f(x) is the vector of the trend values at some point x. Let Υ(x) ≡ Y (x)−f(x)′β̂
be the detrended process.

Second, residuals are interpolated, making abstraction of the trend. The best linear
unbiased predictor (BLUP) of Υ(x) is obtained as a linear combination, with weights λx =
{λ(x1), ..., λ(xn)}, of the n observations of Υ(x) at the n points of the DoE, i.e. Υ(x) =
λ′xΥ(x). The mean squared error of the estimation is given byMSE(x) ≡ E[Y (x)−f(x)′β̂−
λ′xΥ(x))2]. As the MSE is convex, the solution exists, is unique and is given by λ∗x ≡ R−1r(x),
where R = R(xi,xj)16i,j6n is the correlation matrix of Y (x) and r(x) = R(x,xi)16i6n is the
vector of the correlations between Y (x) and Y (x). By replacing the stochastic vector Υ(x)
by its observed value y(x)−Fβ̂ and λx by the optimal weights λ∗x in the expression λ′xΥ(x),
one obtains the so-called mean prediction of y at any point x ∈ D:

E(Y (x)) = f ′(x)β̂ + r(x)′R−1[y(x)− F β̂] (4)

Similarly, by plugging λ∗x in the expression of the MSE, one obtains the mean squared error
of the predictor (the so-called kriging variance):

sY (x) =σ2
(
1− r(x)′R−1r(x)

)
(5)

+
(
f(x)′ − r(x)′R−1F

)′ × (F ′R−1F )−1 (f(x)′ − r(x)′R−1F
)

(6)

σ2 is estimated as follows:

σ̂2 =
1

n
(Y − Fβ̂)′R−1(Y − Fβ̂) (7)

and parameters θ are mostly estimated using the maximum of likelihood, under Gaussian
assumptions. Consequently, the following expression measures the quality of the model,
where smaller values represent a better fit (1 is a k-dimensional unit vector):

− 2 ln
(
β̂, σ̂2, θ

)
= n ln

(
2

π

)
+ n ln

(
σ̂2
)

+ ln (| R |) +
1

σ̂2

(
y − 1β̂

)′
R−1

(
y − 1β̂

)
(8)

4



(a) 2D-view
1 2 3

I
II
III

a

b

c

(b) 3D-view

Figure 3: A latin cube, with 3 factors and 3 levels (source: Goupy & Creighton (2007))

Variance sY (x) tends towards zero when x gets close to experimental points x. In other
words, error is null at samples and increases with distance: kriging is an exact interpolator,
i.e. Y (x) = y(x). However, that property can be released in case of non-deterministic
responses (see below). Contrary to the OLS regression where all observations x are given
an equal weight in the estimation, kriging estimation adjusts the weights λx, depending
on the point x ∈ D where the response y(x) is interpolated. More precisely, experimental
points closer to the point x are given a stronger weight in the estimation of Y (x) than
further ones. That property makes kriging estimations more flexible, and results in more
precise estimations than with OLS (van Beers & Kleijnen (2004)). That feature also requires
particular properties of the DoE.

Properties of the DoE for the kriging approach In classical DoE, points are set
on the extremities of the domain. That characteristic prevents the analysis from accurately
estimating parameters θ in kriging models because the response is only measured at very
distant points. Consequently, kriging estimation requires a DoE with good space-filling
properties. Points have to be uniformly distributed across the domain, that is why we speak
about uniform designs (see Figure 1b). That criteria is essential if the modeller’s aim is a
wide exploration of the model, without a precise prior knowledge of the relations between the
factors and the response (Fang et al. (2000)). Latin hypercubes are often used to this end (see
Goupy & Creighton (2007)). Figure 3 illustrates the way such a DoE is constructed in a case
with 3 factors – A, B and C, each of them taking 3 values. There are then 33 = 27 possible
combinations. Let us start with a square, representing the values of factor A (denoted by
Arabic numbers) and B (in Roman numbers). We then attribute the three Latin letters a, b,
and c, representing the 3 values of factor C, so that a, b and c are uniquely displayed in all
rows and all columns. Only 12 configurations are hence possible2, and we randomly take one.
The DoE involves 9 points, over the 27 initially to be tested. The DoE can be represented
in 3 dimensions, we speak about a cube. When more than 3 dimensions are involved, we
speak about an hypercube. Hypercubes ensure that the non-collapsing criteria is fulfilled:
each combination of the values of three factors is tested only once. More precisely, if one of
the three factors turns out to be unimportant and is eliminated, no points become identical
in the 2D space constituted by the two remaining factors (see van Beers & Kleijnen (2004,
p. 166)).

We propose to use the Latin hypercube of Cioppa (2002), based on previous works of Ye
(1998), because it provides interesting properties, besides having good space filling properties.
Latin hypercubes are not generally orthogonal, some pairs of columns can be correlated. That

2There are two possible triplets of rows (bac, cba, acb) and (abc, cab, bca), each can be permuted in 3! = 6
different ways, so that one obtains 2× 6 = 12 possible configurations.
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feature can create multicolinearity issues in the estimation of the metamodel. Ye (1998)
develops a way to obtain orthogonal hypercubes, and he even retains a more restrictive
condition: not only each pair of columns has to be uncorrelated, but also the squares as well
as the cross-products of each column. However, orthogonality is obtained at the expense of
the space-filling properties of the DoE. Cioppa (2002) develops an efficient trade-off between
both properties, while limiting the size of the DoE. The orthogonality criteria is released
and the author defines a near-orthogonality criterion, according to which absolute values of
correlations cannot exceed 0.03. Results are impressive: Cioppa demonstrates that non-linear
relations and interactions can be significantly identified with only 17 experiments up to 7
factors, 33 experiments up to 11 factors, 65 experiments up to 16 factors, 129 experiments
up to 22 factors and 257 up to 29 factors. Moreover, those corresponding DoE are easy to
generate: a spreadsheet file helping their computation is available in Sanchez (2005). The
DoE are also constructed with a minimum of a priori restrictions on the relations between
the factors and the response, as they allow for the estimation of a polynomial model of the
form (1) as well.

Additional issues in the metamodel choice One can choose more complex forms
of the correlation function R but a more sophisticated correlation function requires more
observations to accurately estimate its parameters.

In practice, the trend µ is often reduced to a constant µ̄, which is thus interpreted as the
mean3 of the process Y . In that case, equations (4) and (5) are reduced to:

E(Y (x)) = µ̄+ r(x)′R−1(y − µ) (9)

However, if the trend is constant, the model is more sensitive to the specification of the
correlation function R and to the estimations of the parameters θ (Jourdan (2005)).

One may choose the form of the trend, or the correlation function, according to an
optimality criterion (see Salle et al. (2012) for an application to an economic model). Either
one can use cross-validation, or external validation.

Cross validation consists in removing one or several points of the DoE and reestimating
the model, and then comparing the error between the estimations and the observed values
at the removed points, based on the Q2 predictivity coefficient (see Durrande et al. (2012)).
That criterion is a proxy of the R2 of standard linear regressions and is computed as4:

Q2 ≡ 1−

∑n
i=1

(
y(xi)− Ỹ (xi)

)2
∑n

k=1 (y(xi)− ȳ)2
(10)

where ȳ is the mean of y over the n observations, Ỹ (xi) is the predicted value of y at the
sampled point xi, when the metamodel Y is estimated with the n − 1 points x−i. Values
close to zero denote a weak explanatory power, whereas values close to one indicate better
fit.

External validation requires the estimation of the response at additional points, outside
the DoE, and the comparison of the estimation error. The model which minimizes the root
mean square error (RMSE) is chosen. Both criteria are broadly consistent with each other
but relying on external validation is preferable, all the more that the DoE involves a small
number of points.

In the case of non-deterministic responses, the same experiment can yield different values
of the response and experiments have to be replicated several times to get a significant
evaluation of the response. The kriging model is then applied to the average value of the
response over the number of replications (van Beers & Kleijnen (2004)). Let ỹ(xi) = y(xi)+εi

3We speak in that case of ordinary kriging, and of simple kriging if the mean is known, contrary to universal
kriging, in the more general case, which is exposed above.

4Recall that kriging is an exact interpolator, that is why we cannot compute the R2.
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be the value of the response at point xi ∈ D. We assume εi ↪→ NID(0, τ2i ). As soon as
the process Y and the errors εi are independent, the model can very easily be extended
to non-deterministic responses. Matrix R in equations (4), (5) and (7), or in (9), is just
replaced by R+ ∆, where ∆ ≡ diag(τ21 , ...τ

2
n) (see for example Roustant et al. (2010)). The

only difference is that the model has now two sources of errors, not only the error due to the
difference between y and its metamodel Y , but also an experimental error, i.e. the noise in
the response measures ε. As a consequence, the variance (5) will be higher than in the case
of deterministic responses.

Purposes of the metamodel The kriging metamodel is mostly devoted to two pur-
poses. Sensitivity analysis of the model is the first one. It aims at identifying how much
influence each factor has on the response, and which factors do not significantly affect the
response. A variance analysis (ANOVA) of the metamodel Y can be performed, as a proxy
of the ANOVA of the true model y (see Jeong et al. (2005)). Formally, letM be the average
of y over D and V be the variance of the model y as follows:

M≡
∫
...

∫
y(x)dx1...dxk (11)

V ≡
∫
...

∫
[y(x)−M]2 dx1...dxk (12)

The main effect of variable xg on y (averaged over the other factors) is given by:

m(xg) ≡
∫
...

∫
y(x)dx1...dxg−1dxg+1...dxk −M (13)

and the two-interaction effect of variables xg and xh:

m(xg, xh) ≡
∫
...

∫
y(x)dx1...dxg−1dxg+1...dxh−1dxh+1...dxk −m(xg)−m(xh) (14)

and the total sensitivity of the response to factor xg (and their interactions with the other
factors) is given by M(xg) ≡ m(xg) +

∑
g 6=hm(xg, xh).

The metamodel can also be optimized, in order to identify the values of the factors which
minimize (or maximize) the proxy Y of the true process y.

The next section provides two simple applications of the kriging-based metamodeling and
hence, gives practical guidelines to the reader.

3 Applications
First, we perform an ANOVA of a very simple economic model to illustrate how kriging-
based metamodeling can be used as a sensitivity analysis tool. To that purpose, we compare
the results obtained with the design generated with the NOLH, with those of a Monte Carlo
design. Second, we apply an optimization procedure to a kriging metamodel, to give an
overview of the new results which can be obtained with that method.

3.1 Sensitivity analysis of Nelson & Winter (1982) model
3.1.1 A simple model of industry evolution

We consider the model of Nelson & Winter (1982, Chap. 12 to 14) and investigate, in
that model, the factors that could lead to the emergence of concentration5. The industry is

5See also Nelson & Winter (1978) for an extensive presentation and discussion of the model. In this paper, we
only use that model as a simple example, in order to apply the method previously developed. We adopt values ed
in the original model or the parameters that we do not include our experiments.
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populated by n firms, indexed by j = 1, ..., n, each producing a quantity qj,t of the good in
each period t according to:

qj,t = Aj,tKj,t (15)

where Kj,t is firm j’s physical capital stock and Aj,t is the productivity of its capital. The
inverse demand function is given by:

Pt =
64

Qt
(16)

where Qt ≡
∑n

j=1 qj,t is the aggregate supply. The net profits of firm j equal:

πj,t = (Aj,tPt − c)Kj,t =

(
Pt −

c

Aj,t

)
qj,t (17)

where c is the variable cost factor per unit of capital, including R & D costs.
We consider here only the simple technological regime with science–based innovations. In

that case, latent productivity increases at a constant exponential rate g. Firms can discover
a more productive technique Aj either by innovation or by imitation. In each period, with
a probability P (innov = 1) = 0.0025Kj,t, a firm can innovate and draws a new technology
log(Ãj,t) ↪→ N (A0 + g.t, σ2). With a probability P (imit = 1) = τimKj,t, a firm can also
imitate the best technology in the industry A∗t = maxj=1,...nAj,t. In t+1, firm j’s technology
is therefore given by the best technology over:

Aj,t+1 = max
(
Ai,t, innov × Ãi,t, imit×A∗t

)
(18)

Gross investment I of a firm is constrained depending on whether the firm is making
economic profits or not. Formally,

Īj,t =

{
πj,t if πj,t < 0

(1 +B).πj,t if πj,t ≥ 0
(19)

where B > 0 denotes the external financing of firms. Each firm j has a target mark-up,
defined as µj,t = ε

ε−sj,t , where ε is the perceived demand elasticity (its value in the original
model is 1, see Equation (16)) and sj,t ≡ qj,t

Qt
is the market share of firm j. Firms desire

positive net investment ITj,t if the ratio of price to unit cost exceeds a target markup factor.
Formally:

ITj,t =

(
1− µj,t

c

Aj,t+1Pt

)
(20)

Finally, actual gross investment Ij,t is given by max
[
0,min(Īj,t, I

T
j,t)
]
.

We study the determinants of the response variable ht ∈ [0, 1], the normalized Herfindhal
index of capital concentration in the last period of the simulation, values close to zero denote
a competitive framework and values close to one stand for a monopolistic industry.

3.1.2 Comparing Monte Carlo sampling versus the NOLH and kriging
approach

Simulation protocols We follow Nelson & Winter (1978) by defining a period t a
quarter, setting c = 0.16, Aj,0 = A0 = 0.16, ∀j, and defining k = 6 factors: τim ∈
[0.000625, 0.005], reflecting different levels of the difficulty of imitation; n ∈ J2, 32K; ε ∈
[0.8, 1000]; g ∈ [0.25, 1.5]%; B ∈ [1, 3.5] and σ2 is related to g with a factor from 4 to 12.

We consider two alternative methods to explore that experimental domain, and to de-
termine the effect of those 6 factors on the response h. The first one involves 1000 Monte
Carlo simulations6, over which we adjust a polynomial regression model of the form (1) with
two-interactions effects.

6We also consider a 10 000 simulation Monte Carlo sample for robustness checks.
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The second one implements the NOLH DoE that we have introduced in the previous
section, over which we estimate a kriging model of h, denoted by H. We then perform an
ANOVA of that kriging metamodel. As we need to discretize the experimental domain to
generate the NOLH DoE, we follow the values investigated by Nelson & Winter (1978), and
consider τim = {0.000625; 0.00125; 0.0025; 0.005}, n = {2, 4, 8, 16, 32}, ε = {0.8; 1; 1000}, g ∈
[0.25, 1.5]% by 0.25 step, B = {1; 1.5; 2; 2.5; 3; 3.5} and σ2

g = {4, 8, 12}. The corresponding
DoE from Sanchez (2005) involves only 17 points and is given in Table 4. Following Nelson &
Winter (1982), we repeat each non-deterministic run 5 times, i.e. we launch 85 simulations.
The analysis is performed using JMP (Cary 2010, Chap. 14) (see also Oeffner (2008) for an
application to a macroeconomic agent-based model)7. We use ordinary kriging (i.e the trend
µ is assumed to be a constant) and the correlation function is Gaussian.

Results Figure 4 reports the ANOVA table of the kriging model H as well as the plots
of marginal and interaction effects, and Tables 1 and 2 depict the results of the polynomial
regression models (for 1000 and 10, 000 simulation samples), in which cross-products have
been introduced (see second column), in order to allow for comparisons with the ANOVA
table of the kriging model.

The overall picture is fairly the same: the number of firms n and the rate of imitation τim
are the main determinants of concentration, while parameters B, ε and g do not significantly
influence the structure of the industry (cf. Figures 4f, 4e, 4c). The more firms, or the less
frequent imitation, the more concentrated the industry (cf. Figures 4a and 4b). As the
size of the market is fixed (see Equation (16)), the selective pressure is strengthened and the
decrease in price is faster, ceteris paribus, as the number of firms n increases. That mechanism
intuitively explains the salient role of n. Moreover, the interaction term between n and τim is
highly significant (see Figure 4g): imitation affects the industry all the more that n is large,
and in that case, scarce imitation leads to a high degree of concentration. Intuitively, it
means that among a lot of firms, a firm is more likely to gain a striking competitive edge, all
the more that it cannot be imitated easily. When the number of firms increase, the selective
pressure on lagging firms increases, and the imitation becomes the major tool for decreasing
this pressure, by catching up with the technological leader. Using the 10, 000 simulation
sample allows to identify further effects, which are not identified with a 1000 simulation
sample but are highlighted by the ANOVA of the kriging model. Nevertheless, the degree of
concentration is affected in a less sizeable way, compared to the effect of parameters n and
τimit. The variability of research outcomes (σ2/g) and the growth rate of latent productivity
g have a weak positive effect on concentration (see Figures 4d and 4h): concentration tends
to emerge when research outcomes are strongly dispersed, all the more that there is a lot
of firms. It should be noted that the kriging analysis underlines the individual effects of g
and σ2/g (see Figures 4c and 4d), as well as the interactions of σ2/g with n and τimit (see
Figures 4h and 4i), while the LS model based on 10, 000 data only significantly reports the
interactions of g with n and τimit. Despite that minor discrepancy, the two models deliver
the same message, and highlight the role of innovation draws : concentration is higher if
innovations are drawn in a wide range, all the more that imitation is rare and firms are
numerous. Here again, in such a context, a firm is more likely to gain a competitive edge.
While that result is intuitively appealing, it should be noted that the effects are quite small.
The possibility of catching the main effects of the parameters, and their interactions, with
only 85 simulations, instead of 1000 or 10, 000 clearly show the frugality of the approach
proposed in this article.

Note finally that those results are completely consistent with those of Nelson & Winter
(1978, 1982).

7R Development Core Team (2009) software can also be used but the package effects, which computes ANOVA
marginal effects, is not directly connected to the DiceKriging package, which performs kriging estimation and
the modeler has to use the package sensitivity, which delivers less detailed results (see Roustant et al. (2010)).
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factors θ M(.) m(.) m(., n) m(., g) m(., σ
2

g
) m(., τim) m(., B) m(., ε)

n 0.0015 0.6402 0.4054 . 0.0000 0.0102 0.2246 0 0
g 14.3371 0.0006 0.0006 0.0000 . 0.0000 0.0000 0 0
σ2

g
0.002 0.0341 0.0136 0.0102 0.0000 . 0.0103 0 0

τim 176794.16 0.566 0.331 0.2246 0.0000 0.0103 . 0 0
B 0 0 0 0 0 0 0 . 0
ε 0 0 0 0 0 0 0 0 .

µ̄ = E(H) = 0.005 σ̂2 = 0.0000 −2 lnLik. = −246, 6999

1 For each of the 6 factors (by row), the second column reports the associated value of θ (see Equation (3)), the
third one gives the total sensitivity, which fall into the main effect (fourth column, see Equation (13)) and the
two-interaction effects with the others factors (all remaining columns, see Equation (14)).

(a) m(n) (b) m(τim) (c) m(g)

(d) m(σ
2

g ) (e) m(ε) (f) m(B)

(g) m(n, τim) (h) m(σ
2

g , n) (i) m(τim,
σ2

g )

Figure 4: ANOVA table of the kriging model H.
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Estimate Std. Error Pr(> |t|) Estimate Std. Error Pr(> |t|)
cst. 0.312 0.116 0.0082** n.σ

2

g 0.001 0.000 0.035*
n 0.965 0.003 0.000*** n.τim 6.752 0.4284 0.000***
σ2

g 0.001 0.012 0.90 σ2

g .τim 1.926 2.0052 0.338
τim -84.13 24.262 0.001*** n.B -0.001 0.001 0.144
B -0.0214 0.034 0.528 σ2

g .B 0.001 0.003 0.804
g 5.54 8.186 0.499 τim.B 9.1775 5.4153 0.1
ε 0.000 0.000 0.347 n.g -0.1469 0.1479 0.321

σ2

g .g -0.5928 0.6673 0.375
τim.g 1056.295 1297.656 0.416
B.g -0.66 1.836 0.719
n.ε -0.000 0.000 0.179
σ2

g .ε -0.000 0.000 0.517
τim.ε -0.001 0.01 0.364
B.ε 0.000 0.000 0.922
g.ε -0.000 0.003 0.917

Adjusted R2 = 0.9997 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’ ’ 1

Table 1: OLS regression of h over the 1000 points Monte Carlo sample.

Estimate Std. Error Pr(> |t|) Estimate Std. Error Pr(> |t|)
cst. 0.3580 0.0408 0.0000*** n.σ

2

g -0.0001 0.0001 0.2408
n 0.9551 0.0011 0.0000**** n.τim 7.1698 0.1494 0.0000***
σ2

g 0.0047 0.0037 0.2062 σ2

g .τim -0.1254 0.5763 0.8278
τim -66.4845 7.6013 0.0000*** n.B -0.0001 0.0002 0.6389
B 0.0002 0.0107 0.9883 σ2

g .B 0.0001 0.0008 0.9190
g 3.4004 2.6649 0.2020 τim.B 0.5617 1.5445 0.7161
ε 0.0001 0.0000 0.0565 n.g -0.2076 0.0525 0.0001***

σ2

g .g -0.3193 0.2025 0.1150
τim.g 836.0536 368.2086 0.0232*
B.g 0.0559 0.5426 0.9180
n.ε 0.0000 0.0000 0.6882
σ2

g .ε -0.0000 0.0000 0.0607
τim.ε -0.0060 0.0047 0.1944
B.ε -0.0000 0.0000 0.9122
g.ε -0.0031 0.0016 0.0565

Adjusted R2 = 0.996 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’ ’ 1

Table 2: OLS regression of h over the 10, 000 points Monte Carlo sample.

3.2 Kriging-based optimization
3.2.1 A baseline oligopoly model

We define a simple oligopoly game with n > 1 firms, calibrated by Vallée & Yıldızoğlu (2009):

P (qj , Q−j) = 256− 2(qj +Q−j) (21)

C(qj) = 56qj + q2j (22)

where P denotes the aggregate price, qj firm j’s supply, Q−j =
∑

i 6=j qi and C(.) is the cost
function. We assume n = 30, and the game has two symmetric equilibria, ∀j:
• Cournot-Nash equilibrium (CE): qj ' 3.125 and the profit equals πcj = 68.5

• Walrasian equilibrium (WE): qj = qw ' 3.2258 and the profit equals πwj = 62.45 < πcj

Firms update their supply qj according to a learning mechanism. With a probability
Pim, for each period, firms can imitate the strategy of the firm which is making the highest
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cov. matèrn Gaussian cov. Exp. cov.
µ̄ 1st order µ̄ 1st order µ̄ 1st order

RMSE 1.5787 1.6335 1.3208 2.4772 2.1608 2.1458
Q2 0.6865 0.7543 0.7144 0.6703 0.3913 0.6457

Table 3: Comparison and selection of kriging models.

profit in the industry. Otherwise, they use their individual mental model, represented by
an artificial neural network (ANN)8. Each firm is endowed with a one-hidden layer ANN
with hid > 1 hidden nodes, which is fed for each period with 4 inputs (price evolution,
individual sales evolution, variation of individual costs and evolution of individual profit),
and each firm has a population of 40 quantity strategies. For each period, each firm selects
the strategy among that population, which maximizes the expected discounted profit flow
predicted by the ANN over the fL+1 future periods (with a discount factor set to 0.99). As
new observations become available, firms’ ANN are trained by back propagating the errors
on the ANN coefficients: epoch iterations are performed, to reduce each time a proportion δ
of the error between the predicted and the actual profit flow. Finally, every gaRate periods,
the population of strategies is modified by operators selection, mutation (with a probability
Pmut every γGA periods) and average crossover (with a probability Pco).

In that model, we investigate the design of the learning algorithm which allows the
industry to converge towards CE. We have k = 8 factors depicting firms’ learning, with the
associated variation domains: Pim ∈ [0, 0.25], hid ∈ J2, 4K, fL ∈ J0, 12K, epoch ∈ J20, 50K,
δ ∈ [0.05, 1], γGA ∈ J1, 30K, Pmut ∈ [0.01, 0.2] and Pco ∈ [0.05, 0.4]. The response variable is
the absolute distance of aggregate supply to CE, d ≡|

∑n
j=1 qj −nqc |, and the kriging-based

approximation is denoted by D. We aim at determining the configuration(s) of the factors,
for which that distance is minimized. We sample the 8-dimensional parameters space with
Sanchez (2005) DoE given in Table 5, which defines n = 33 non-deterministic experiments,
each is repeated 20 times and we apply kriging over the average response in each experiment.
Efficient sampling is especially useful for models involving algorithms such as ANN, which
are very time consuming to run.

3.2.2 Optimization of the kriging metamodel

We perform all the analysis with R Development Core Team (2009) software. The corre-
sponding code is provided in Appendix B.

The first stage is to choose the form of the kriging model. We compare three forms
of correlation functions (Gaussian, exponential and Matèrn ν = 5/2, which is the default
function in the package DiceKriging, see Roustant et al. (2010)), and two specifications
of the trend µ, a constant and a first-order polynomial 9. To that purpose, we use both
external validation and cross-validation. For external validation, we evaluate the model at
7 additional experimental points, which we randomly choose over the whole experimental
domain (see Table 5). Table 3 reports the result of the comparison. Both criteria broadly set
the models in the same order, but we have only few points (n = 33), that is why we rather
rely on external validation. Accordingly, we retain the form of the kriging metamodel which
minimizes the RMSE between the predicted response and the effectively measured one at
the 7 additional points. We therefore select the ordinary kriging model (i.e. in which the
trend µ is only a constant term) with the Gaussian correlation function.

Table 5a then gives the estimations of the coefficients of the selected model. Figure 5b
summarizes the effects of each factor on the response and identifies three factors, which drive

8See Masters (1993) for a general statement, see Yıldızoğlu (2001) and Yıldızoğlu et al. (2012) for the precise
description of the learning algorithm.

9Higher order polynomials would involve too many parameters to estimate, considering only 33 observations.
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E(D) = µ̄ 5.0279 σ̂2 9.9231
θPim 0.0998 θγGA 19.4
θPmu 0.0791 θδ 1.9
θPco 0.7 θhid 4
θfL 24 θepoch 60

(a) Ordinary kriging estimation of d
(Gaussian correlation function)

probImit probMut probCO forwardLook gaRate learnRate hidNodes numEpoch
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(b) Sensitivity analysis of the selected metamodel
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(c) Estimated response surfaces of the kriging model, the other 5 parameters
are set at the middle of their variation domains. Pmut on the x-axis, γGA on
the y-axis, for three values of Pim = {0, 0.15, 0.25}.

Figure 5: Kriging model D.

the model’s dynamics, with the same order of magnitude10: the probability of imitation Pim
(probImit), the probability of mutation Pmut (probMut) and the rate of application of the
genetic algorithm γGA (gaRate), which modifies the population of firms’ strategies. Figures
5c displays the estimated response D according to the values of those factors. The main
insight is the primary role of social learning in the convergence towards CE: in the absence
of imitation, the model remains far from CE (D equals almost 4 units) and mutation has to
be very scarce (recall that mutation of strategies arises every γGA period, with a probability
Pmut for each strategy). Convergence is much better (D < 0.5) with a combination of
moderate imitation (Pim = 0.15) and moderate mutation (Pmut ' 0.07, γGA ' 20). That
configuration of learning allows efficient exploration and diffusion of interesting strategies in
terms of profit, and favors the convergence towards CE, which delivers a higher collective
profit. Nevertheless, too much imitation prevents firms from sufficiently using individual
learning through their ANN, and hinders convergence towards CE. Note that the negative
role of social learning in the convergence of the Cournot oligopoly has been extensively
discussed in the literature (see notably Vallée & Yıldızoğlu (2009)).

In a last stage, we determine the factors configuration (P ∗im, hid
∗, fL∗, epoch∗, δ∗, γ∗GA, P

∗
mut, P

∗
co)

which minimizes the estimated value of the distance D, denoted by D∗. Any optimization
algorithms can be used, but we draw the attention on the package rgenoud (R-GENetic Op-
timization Using Derivatives, see Mebane & Sekhon (2011)), connected with DiceOptim (see
Roustant et al. (2010)) provided by R Development Core Team (2009). That carries out a
quite powerful optimization function that efficiently combines evolutionary algorithm meth-
ods for global purpose with a derivative-based method for local search of optima (see also
Salle et al. (2012) for an application of that function to the minimization of a Central Bank’s
loss function in a macroeconomic agent-based model). With that algorithm, we obtain the
optimal design of the learning algorithm to converge towards CE:

(P ∗im, hid
∗, fL∗, epoch∗, δ∗, γ∗GA, P

∗
mut, P

∗
co) = (0.1454, 3, 9, 37, 0.8745, 23, 0.08, 0.05)

10Note that applying sensitivity analysis to the other forms of kriging identifies the same determinants, which
indicates that the overall picture of the metamodel is not sensitive to the specification.
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for a minimum value D∗ = 0.1165, which is very small given that D measures the total
distance for 30 firms. Simulations performed with that optimal configuration effectively
report very small values of the distance, which proves that the kriging estimation is accurate.

4 Concluding remarks
This paper presents and illustrates an alternative to Monte Carlo exploration of computer
simulation models involving many parameters and a high computational cost. We give
guidelines for the implementation of an efficient and time-saving method for sampling the
parameters space and optimally predicting the response over the whole experimental domain.
We show, using two example frameworks, that such a parsimonious model can give very
interesting results. Many AMBs in economics and management could hence benefit from
such an approach.
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A DoE

exp. τim% n σ2

g
ε B g %

1 0.125 32 12 1 1.5 1.5
2 0.0625 4 12 1 1 0.75
3 0.0625 8 4 1 2.5 1.25
4 0.125 16 8 1000 2.5 0.5
5 0.25 32 8 0.8 2 0.25
6 0.05 4 8 1000 1 1.25
7 0.25 4 12 1 3 0.75
8 0.25 32 12 1000 3 1
9 0.25 8 8 1 2.5 1

10 0.25 2 4 1 3 0.25
11 0.5 16 4 1 3.5 1
12 0.5 8 12 1000 2 0.5
13 0.25 8 8 0.8 2 1.25
14 0.125 2 8 1000 2.5 1.5
15 0.0625 16 8 0.8 3.5 0.5
16 0.125 16 4 1 1.5 1
17 0.125 4 8 0.8 1.5 0.75

Table 4: DoE, Nelson & Winter (1982), k = 6 factors, n = 17 experiments

exp. δ Pim Pco Pmut fL hid γGA epoch
DoE

1 1.00 0.02 0.20 0.05 11 3 21 34
2 0.91 0.25 0.09 0.08 6 2 23 29
3 0.88 0.11 0.37 0.04 0 3 22 21
4 0.58 0.22 0.40 0.09 11 2 25 22
5 0.94 0.01 0.21 0.05 8 3 13 37
6 0.97 0.23 0.16 0.06 5 2 6 46
7 0.70 0.12 0.39 0.06 0 3 12 47
8 0.55 0.17 0.38 0.08 11 3 7 50
9 0.67 0.06 0.13 0.11 9 3 1 26

10 0.76 0.16 0.15 0.14 3 3 4 31
11 0.73 0.05 0.31 0.19 4 2 5 25
12 0.79 0.18 0.28 0.19 9 4 15 32
13 0.61 0.04 0.12 0.12 7 2 29 43
14 0.85 0.15 0.18 0.18 2 3 28 42
15 0.64 0.05 0.35 0.18 5 2 20 43
16 0.82 0.16 0.26 0.20 10 4 17 40
17 0.53 0.13 0.23 0.11 6 3 16 35
18 0.05 0.23 0.25 0.16 2 3 10 36
19 0.14 0.00 0.36 0.13 6 4 8 41
20 0.17 0.14 0.08 0.17 12 3 9 49
21 0.47 0.03 0.05 0.12 1 4 6 48
22 0.11 0.24 0.24 0.16 4 3 18 33
23 0.08 0.02 0.29 0.15 7 4 25 24
24 0.35 0.13 0.06 0.15 12 3 19 23
25 0.50 0.08 0.07 0.13 1 4 24 20
26 0.38 0.19 0.32 0.10 3 3 30 44
27 0.29 0.09 0.30 0.07 9 3 27 39
28 0.32 0.20 0.14 0.02 8 4 26 45
29 0.26 0.07 0.17 0.02 3 2 16 38
30 0.44 0.21 0.33 0.09 5 4 2 27
31 0.20 0.10 0.27 0.03 10 3 3 28
32 0.41 0.20 0.10 0.03 8 4 11 28
33 0.23 0.09 0.19 0.01 2 2 14 30

Additional points for (external) validation
1 0.75 0.21 0.10 0.06 7 3 5 39
2 0.86 0.15 0.35 0.03 6 2 19 42
3 0.21 0.12 0.15 0.07 10 2 13 25
4 0.52 0.06 0.18 0.09 3 3 16 46
5 0.41 0.09 0.27 0.04 9 4 23 36
6 0.30 0.19 0.31 0.06 2 3 26 28
7 0.63 0.04 0.23 0.02 4 4 9 31

Table 5: DoE, oligopoly model with learning,
k = 8 factors, n = 33 experiments
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B R codes for kriging

# X is in data.frame format, and contains the DoE (n=33 rows, k=8 columns), column names are probImit,
#probMut, probCO, forwardLook, gaRate, learnRate, hidNodes, numEpoch.
# XValid is in data.frame format, and contains the values of the factors at the additional points (n=7 rows,
#k=8 columns)
# y is in data.frame format, and contains the values of the response d at the 33 points of the DoE, averaged
#over the 20 replications (column is named totDist, 33 rows)
# yValid is in data.frame format, and contains the values of the response at the 7 additional points (averaged
#over the 20 replications ).
# DataVar is a column of n=33 rows, with contains the variance of the response d over the 20 replications of
#each 33 experiments.
# Downloading kriging packages (see Roustant et al. (2010))
library(DiceKriging)
library(DiceEval)
library(DiceOptim)
library(rgenoud)

# Creating a function calculQ to compute the Q2 coefficient for any kriging model m:
calculQ <− function (m) { error <− (leaveOneOut.km(m, type="UK")$mean − y)^2
x <− 1
cumul <− 0
while (x < 34) {
cumul <− cumul + error[x,]
x <− x +1
}
cumul
devi <− (y − mean(y))^2
denom <− 0
i <− 1
while (i < 34) {
denom <− denom + devi[i,]
i <− i +1
}
Q2 <− 1 − (cumul / denom)
Q2
}

# Estimating the 6 kriging models and corresponding Q2 with:
#mean (ordinary kriging) and matern 5/2 covariance:
m1 <− km(~ 1, design=X, response=y, covtype="matern5_2", noise.var=DataVar$totDist)
m1
calculQ(m1)
#a first−order polynomial trend and matern 5/2 covariance:
m2 <− km(~ ., design=X, response=y, noise.var=DataVar$totDist, covtype="matern5_2")
m2
calculQ(m2)
#mean (ordinary kriging) and gaussian covariance:
m3 <− km(~ 1, design=X, response=y, covtype="gauss", noise.var=DataVar$totDist)
m3
calculQ(m3)
#a first−order polynomial trend and gaussian covariance:
m4 <− km(~ ., design=X, response=y, noise.var=DataVar$totDist, covtype="gauss")
m4
calculQ(m4)
#mean (ordinary kriging) and exponential covariance:
m5 <− km(~ 1, design=X, response=y, covtype="exp", noise.var=DataVar$totDist)
m5
calculQ(m5)
#a first−order polynomial trend and exponential covariance:
m6 <− km(~ ., design=X, response=y, noise.var=DataVar$totDist, covtype="exp")
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m6
calculQ(m6)

# Computing the associated RMSE of the 6 kriging models
test1 <− predict(m1, newdata=XValid, type="UK")
test2 <− predict(m2, newdata=XValid, type="UK")
test3 <− predict(m3, newdata=XValid, type="UK")
test4 <− predict(m4, newdata=XValid, type="UK")
test5 <− predict(m5, newdata=XValid, type="UK")
test6 <− predict(m6, newdata=XValid, type="UK")
RMSE1 <− RMSE(Valid$totDist, test1$mean)
RMSE2 <− RMSE(Valid$totDist, test2$mean)
RMSE3 <− RMSE(Valid$totDist, test3$mean)
RMSE4 <− RMSE(Valid$totDist, test4$mean)
RMSE5 <− RMSE(Valid$totDist, test5$mean)
RMSE6 <− RMSE(Valid$totDist, test6$mean)

# The selected model is m3 (ordinary kriging with Gaussian correlation), computing m3 sensitivity analysis :
library( sensitivity )
kriging .mean3 <−function(X,m3) predict.km(m3,X,"UK",se.compute=FALSE)$mean
SA.metamodel3 <−fast99(model=kriging.mean3,factors=c("probImit", "probMut", "probCO",
"forwardLook", "gaRate", "learnRate", "hidNodes", "numEpoch"), q.arg=list(list(min=0,max=0.1),
list (min=0.01, max=0.1), list(min=0.05, max=0.4), list(min=0, max=12), list(min=1, max=30),
list (min=0.05, max=1), list(min=2, max=4), list(min=20, max=50)), m=m3)

plot(SA.metamodel3)

# Drawing the response surface of the kriging model m3, as a function of probMut and learnRate values)
n.grid <− 12
x.grid <− seq(0.01,0.1,length=n.grid)
y.grid <− seq(0.01,1,length=n.grid)
X.grid <− expand.grid(probImit=0.05,probMut=x.grid,probCo=0.4, fL=6, gaRate=15, learnRate=y.grid,
hidNodes=3, numEpoch=30)
pred.m3 <− predict(m3, X.grid, "UK")
contour(x.grid, y.grid, matrix(pred.m3$mean, n.grid, n.grid), 12, xlab=expression(prob[im]), ylab=
expression(delta), main="Kriging␣mean␣(OK)")

#optimizing the kriging model m3:
x_star <− max_EI(m3, lower=c(0,0.01,0.05, 0, 1, 0.01, 2, 20), upper=c(0.25,0.2, 0.4, 12, 30, 1, 4, 50),
control =list(pop.size=100, max.generations=50, wait.generations=50))
opt1 <− data.frame(x_star$par[1], x_star$par[2], x_star$par[3], x_star$par[4], x_star$par[5],
x_star$par[6], x_star$par[7], x_star$par[8])
opt1
pred.m3 <− predict(m3, opt1, "SK")
pred.m3$mean
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