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Contrôle optimal de la pollution avec retards distribués 

Résumé 

Nous présentons un modèle de contrôle optimal de la pollution avec des retards distribués 

dans la dynamique d'accumulation du stock de pollution. Nous résolvons analytiquement le 

système dynamique complexe qui résulte de l'introduction de ces retards en utilisant des 

formes fonctionnelles générales ainsi qu'une structure de distribution qui couvre une large 

gamme de distributions. Notre contribution enrichit la littérature d'optimisation dynamique 

qui s'intéressait jusque là principalement au cas de simples retards discrets et développe une 

méthode originale pour traiter les problèmes de contrôle avec des équations différentielles 

mixtes. Nos résultats montrent l'impact qualitatif de ces retards sur les trajectoires optimales 

et identifient les conditions de stabilité et d'apparition de cycles limites. 

Mots-clés : Contrôle optimal de la pollution, Retards Distribués, Equations différentielles 

mixtes, Bifurcation de Hopf 

 

Optimal pollution control with distributed delays 

Abstract 

We present a model of optimal stock pollution control with distributed delays in the stock 

accumulation dynamics. Using generic functional forms and a distribution structure that 

covers a wide range of distributions, we solve analytically the complex dynamic system that 

arises from the introduction of these distributed delays. Our contribution extends the 

dynamic optimization literature that focused on the single discrete delay case and develops 

an original method to address control problems with mixed type functional differential 

equations. Our results show the qualitative impact of acknowledging these distributed delays 

on the optimal pollution paths dynamics and identify the occurrence of limit cycles and the 

stability conditions of such a model that can be used to design efficient environmental 

policies. 

Keywords: Optimal Pollution Control, Distributed Delays, Mixed Type Functional Differential 

Equations, Hopf Bifurcation 
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1 Introduction
Since the seminal contributions of Keeler et al. (1972), partial equilibrium stock
pollution control models have been discussed and enriched in various ways with
the introduction of uncertainty, multiple pollutants, irreversibility, technological
change, etc. However, apart from a few exceptions presented below, this vast
literature assumes systematically that the time of emission is tantamount to the
time of contamination. This assumption leaves aside a crucial aspect of many
pollution problems that feature significant delays in the accumulation process.
For instance the contamination of aquifers by leaching nitrates from agricultural
sources can occur several decades later (Bordenave et al., 1999), which explains
in some cases why reductions in nitrogen-loaded inputs are not immediately
followed by a decrease in downstream water pollution (Grimvall et al., 2000).

From a theoretical point of view, the addition of these delays to the stan-
dard optimal stock pollution control framework modifies the properties of the
optimal pollution path. Winkler (2011) proves that a modified model with a
discrete delay will display monotonic optimal paths if the objective function is
separable in both stock and control variables, otherwise oscillatory paths may
take place. Using such a separable objective function in a model with hetero-
geneous polluters, Bourgeois and Jayet (2011) show that higher time lags lead
to a higher optimal pollution stock at the steady state and that this effect is
amplified by asymmetric information. The common feature of these contribu-
tions is that they use a single discrete delay, assuming that an emission at time
t will reach entirely and systematically the pollution stock at time t+ τ . As we
will show this kind of delay merely translates the dynamic path and leaves its
mathematical properties relatively unaffected.

This model with a discrete delay implies nonetheless that the accumulation
process is perfectly homogenous and it ignores the uncertainty that character-
izes the accumulation velocity of polluting emissions. Site-specific conditions
such as soil heterogeneity in the case of water contamination by nutriments or
temperature and pressure variations in the case of greenhouse gases can cause
significant variability in the time frame of pollutants accumulation. To better
capture the intricate lags phenomena at stake, the time of accumulation of these
pollutants should in fact be distributed along a time interval following the emis-
sion. Such distributed delays draw light on the challenging task of assessing the
link between the time and amount of emissions and the time and intensity of the
damage they trigger. They raise significant technical difficulties which, contrary
the single discrete delay model, cannot be overcome easily even for a separable
objective function. The application of Pontryagin’s principle to this model with
distributed delays gives rise to a system of optimal conditions that includes at
the same time leads and lags, turning the system into Mixed Type Functional
Differential Equations (MFDE). To our knowledge these delays have never been
dealt with in optimal pollution control problems with general functions. Fed-
erico et al. (2010) do address a similar class of problems but they use specific
forms in order to solve explicitly the Hamilton Jacobi Bellman equations.

Our aim is to characterize analytically these complex dynamics and the
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stability conditions of the model using general functional forms. To do so we
extend the approach used by Boucekkine et al. (2010) for vintage capital and
we resort to an original method to address the MFDE at stake. Our results
are based on a distribution structure that can cover a wide range of specific
distributions. Our theoretical contribution finds significant applications in the
design and calibration of economic environmental policies but could also be
applied beyond this field to various other economic dynamic systems exhibiting
similar delays (advertising, capital building,...).

After presenting in section 2 the general optimal stock pollution control
model with delays and reassessing analytically the main properties of the single
discrete delay problem, we introduce distributed delays in Section 3 under the
most general form and we characterize the properties of the dynamic system
with MFDE. Section 4 concludes.

2 Introducing delays in the standard optimal pol-
lution control model

We consider the introduction of delays in a standard dynamic partial equilib-
rium model including a representative producer/polluter and the environmental
damage undergone by society.

2.1 The model
The standard social planner problem is

max
p(.)

∫ ∞
0

[f (θp(t))−D (c(t))] e−ρtdt

where f(θp(t)) is the private benefit derived from the polluting emissions
p(t), D(c(t)) is the environmental damage caused by the pollution stock c(t)
and ρ is the social discount rate with ρ ∈ ]0, 1[. f and D feature the standard
properties of the literature: f positive, non-decreasing, concave, defined over
R+ and respecting the Inada conditions and D increasing, convex and such that
D(0) = 0. Assuming a standard linear relation between production intensity and
polluting emission, we define θ as the constant technological pollution factor,
θ > 0.

In order to study the influence of delays on the optimal control problem,
we will consider a general expression of the pollution accumulation process that
will allow us to address various types of delays. The standard accumulation
equation can be written, with β the natural decay rate of pollution

ċ (t) = −βc (t) +

∫ t−τ1
t−τ2 p (u)µ (t− u) du∫ τ2

τ1
µ(u)du

(1)
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where 0 ≤ τ1 < τ2 ≤ ∞ and µ (.) is a measure function on [τ1, τ2]. This
general writing under the form of a normalized measure is convenient to enclose
a wide range of distribution structures. The choice of the measure µ (.) will
depend on the specific accumulation process and the normalization is necessary
to guarantee that no extra pollution is created ex nihilo in the system.

Pollution emitted at time t will be released in several weighted loads, dis-
tributed a priori across a time interval [t+ τ1, t+ τ2). More precisely, pollution
emitted at time t will reach the stock at time t+u, with weight µ (t+ u) where
u ∈ [τ1, τ2).

With this writing, the benchmark model corresponds to the single Dirac
measure µ (v) = δ0(v), where the Dirac measure is defined, for any a ∈ R by

δa(v) =

{
1, if v = a
0, otherwise.

In this case the accumulation of pollution is instantaneous and the accumulation
dynamics is written as

ċ (t) = −βc (t) + p (t)

For an homogeneously delayed accumulation process, we use the single Dirac
measure µ (v) = δτ (v), where the delay τ is strictly positive and τ ∈ [τ1, τ2). The
accumulation rewrites as the classical linear discrete delay differential equation
such as it can be found in Winkler (2011).

ċ (t) = −βc (t) + p (t− τ) (2)

We will reassess below the main properties of this discrete delay model before
working in Section 3 with the general definition of the measure in order to cover
the wider range possible of distribution structures.

2.2 The impact of a single discrete delay on the optimal
pollution path

The properties of the benchmark problem with initial condition c(0) = c0 are
well known: the optimal pollution profile has the saddle point property, it is a
monotonous trajectory which converges to a unique steady state.

When a discrete delay τ is taken into account as in (2), the optimal control
problem becomes

max
p(.)

∫ ∞
0

[f (θp (t))−D (c (t))] e−ρtdt

s.t. ċ (t) = −βc (t) + p (t− τ)

c(σ) = c0 (σ) ∈ C ([−τ, 0]) given for σ ∈ [−τ, 0]

p(σ) = p0 (σ) ∈ CB ([−τ, 0)) given for σ ∈ [−τ, 0)
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where C ([−τ, 0]) denotes the set of continuous functions on [−τ, 0] and
CB ([−τ, 0)) denotes the set of continuous functions x (.) on [−τ, 0) such that
x (0−) is bounded. These additional definitions are standard (d’Albis et al.,
2012) as far as the discrete delay case is concerned.

This problem has been studied by Winkler (2008) and Bourgeois and Jayet
(2011). As we recall in A with a full resolution, on the optimal path, c (t)
depends only on p (t− τ), for every t ≥ 0. From the modified system (15) in
A.1 we can build a planar phase diagram (c (t) , q (t)), where q (t) = p (t− τ),
and show that the optimal pollution trajectory has the saddle path property: it
converges monotonically to a steady state (see Lemma 7 in A.4).

These results depend highly on the presence of a unique discrete delay and
on the separability of the objective function. Indeed, thanks to the separability
we can isolate the damage occurring between time 0 and time τ since this
damage is caused by emissions taking place before time 0 and over which the
social planner has no control. As p(σ) is known for σ ∈ [−τ, 0), integration of
the state equation for t ∈ [0, τ ] enables us to compute c(t), for t ∈ [0, τ ]. The
objective function can thus be rewritten

−
∫ τ

0

D (c (t)) e−ρtdt+ max
p(.)

∫ ∞
τ

[
f (θp (t− τ)) e−ρ(t−τ)dt−D (c (t)) e−ρt

]
dt

The first term corresponds to the damages predetermined before the pollu-
tion variable can be controlled. As such, it can be ignored in the maximization
program and the problem can be rewritten

max
q(.)

∫ ∞
τ

[f (θq(t)) eρτ −D (c (t))] e−ρtdt

s.t. ċ (t) = −βc (t) + q(t)

with initial condition c(τ) known

This problem is thus rather similar to the benchmark model except for the
weight eρτ on the benefit function. Delays have only quantitative but not qual-
itative effects on the optimal trajectory. An intuitive result, shown by Winkler
(2008) and Bourgeois and Jayet (2011), and for which we present a full proof
in A.2 (Lemma 5), is that an increase of the delay increases the optimal steady
state pollution stock. The optimality conditions, derived and discussed in A.1
(equation (13)), allow us to show that a higher delay leads to a higher emission
level at the steady state. The economic interpretation of this impact of the
delay on the control and the state variables is quite straightforward: because of
the delays, the damages caused by the polluting emissions will take place later
in time. In a discounted framework this means that these damages will weight
less in the social planner’s program, who will allow for a higher optimal pollu-
tion level at the steady state. It can thus be argued that the delays accelerate
the discounting effect on damages while the benefit remain unaffected. This
effect will also arise in the case of distributed delays. We complete this result
by showing that the dynamics on the optimal path are monotonous (Lemma 6,
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A.3) and that the saddle property is preserved (Lemma 7, A.4), which is not
necessarily the case for distributed delays as we will see in the next section.
Figure 1 illustrates this shift of the steady state under the addition of delays
that merely "translates" the dynamic system in time.

Combining the positive relation mentioned above between emission level and
the delay (Lemma 5 in A.2) and the first order condition (13), it can be easily
shown that a higher delay increases the shadow price of pollution x(t) along the
optimal path and at the steady state. The increase in the (negative) shadow
price caused by the delay implies a reduction in the tax that would implement
the optimal pollution path. An optimal environmental policy accounting for
delays must be less stringent. Turned around the other way, this indicates that
if an environmental policy that ignores delays is implemented it will result in
inefficient overregulation. Our result is thus in line with the findings of Kim et
al. (1993) and others on the topic.

Figure 1: Phase Diagram for the benchmark model (τ = 0) and for a simple
delay (τ > 0) in the (c(t), q(t)) plane

Overall, the core properties of the benchmark optimal control model are
preserved in presence of delays. In terms of environmental policy, this means
that the optimal pollution path will be qualitatively similar to the benchmark
case but it will result in a higher accumulated pollution stock at the steady
state.
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3 Optimal pollution control in the presence of
distributed delays

Let us now consider the more realistic case of distributed delays. We shall
include in our definition of "distributed delays" the case of a sum of discrete
delays that can also be captured by our accumulation dynamics (1) and that is
presented below. As noted in the Introduction, this configuration can encompass
a large range of complex pollution problems characterized by significant site
specific heterogeneity in the pollutants’velocity (see Gaines and Gaines, 1994
for the case of nitrates). In order to keep our results as general as possible,
we will work with the general definition of the measure presented in Section
2.1. Before solving the general problem, let us give two examples of possible
distribution specifications.

3.1 Examples of specific distribution structures
To start with, this measure can be specified to reflect a simple case where the
initial polluting emission p (t) will reach the stock in two loads, one at time t+τ1
and the other at time t+ τ2, with 0 ≤ τ1 < τ2. Denoting the weight of each load
respectively ε and (1− ε), with ε ∈ (0, 1), this mechanism corresponds to a sum
of weighted Dirac measures (see Figure 2). In that case the measure function µ
is written

µ (v) = εδτ1(v) + (1− ε)δτ2(v)

and the accumulation equation (1) becomes a delay differential equation with
two discrete delays. More precisely, it can be rewritten

ċ (t) = −βc (t) + [εp (t− τ1) + (1− ε)p (t− τ2)]

Figure 2: Sum of discrete delays

The general measure function can also be specified as a truncated probability
exponential distribution over a time interval [τ1, τ2] such that
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µ (v) =

{
e−ϑv∫ τ2

τ1
e−ϑsds

for v ∈ [τ1, τ2]

0 otherwise

This distribution, roughly illustrated in a discretized manner in Figure 3,
can cover a wider range of delayed accumulation mechanisms as the initial load
is divided in a continuous distribution over time. The parameter ϑ sets the
repartition of this load in time: the higher ϑ the earlier the emissions reach
the stock within the time interval [τ1, τ2]. The accumulation equation (1) now
becomes

ċ (t) = −βc (t) +

∫ t−τ1
t−τ2 e

−ϑ(t−s)p (s) ds∫ τ2
τ1
e−ϑsds

Figure 3: Distributed delays with exponential kernel (discretized representation)

3.2 Pollution control with distributed delays
Let us now tackle the model with the general measure function

max
p(.)

∫ ∞
0

[f (θp (t))−D (c (t))] e−ρtdt

sc ċ(t) = −βc(t) +

∫ t−τ1
t−τ2 p (u)µ (t− u) du∫ τ2

τ1
µ (u) du

c(σ) = c0 (σ) ∈ C ([−τ2, 0]) given for σ ∈ [−τ2, 0]

p(σ) = p0 (σ) ∈ CB ([−τ2, 0)) given for σ ∈ [−τ2, 0)

For the sake of clarity, let us denote α12 = 1∫ τ2
τ1

µ(s)ds
the constant factor

weighting the emissions
∫ t−τ1
t−τ2 µ (t− s) p (s) ds that took place over the [t− τ2, t−

τ1] interval. Contrary to the single discrete delay model, no change of variables
can turn the system into a standard problem without delays. We thus need to
detail carefully the Lagrangian to rewrite the system in a tractable form.
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The Lagrangian, with ξ (t) the adjoint variable, is written as

L =

∫ ∞
0

[f (θp (t))−D (c (t))] e−ρt+ξ (t)

(
−ċ(t) + βc(t) + α12

∫ t−τ1

t−τ2
p (u)µ (t− u) du

)
dt

Doing part integration and applying Fubini’s theorem (see B.1) on L yields

L =

∫ ∞
0

[f (θp (t))−D (c (t))] e−ρt + ξ̇c(t)− ξβc(t)

−α12p (t)

∫ t+τ1

t+τ2

ξ (u)µ (u− t) dudt+ ξ (0) c (0)− lim
t→∞

(ξ (t) c (t))

+α12

∫ 0

−τ2
p (t)

∫ t+τ2

0

ξ (u)µ (u− t) dudt− α12

∫ 0

−τ1
p (t)

∫ t+τ1

0

ξ (u)µ (u− t) dudt

We thus get the first order conditions{
θf ′ (θp (t)) e−ρt = −α12

∫ t+τ2
t+τ1

ξ (u)µ (u− t) du
ξ̇(t) = D′ (c (t)) e−ρt + ξ (t)β

and the transversality condition

lim
t→∞

ξ (t) c (t) = 0

Substituting in the previous system x (t) = ξ (t) eρt, where x (t) is the current
value shadow price of pollution yields

 θf ′ (θp (t)) = −α12

∫ t+τ2

t+τ1

x (u) e−ρ(u−t)µ (u− t) du (3)

ẋ (t) = D′ (c (t)) + x (t) (β + ρ) (4)

and the transversality condition

lim
t→∞

x (t) c (t) e−ρt = 0

The first order condition (3) expresses in a framework with distributed delays
the traditional trade-off between the marginal benefit triggered by an additional
unit of pollution and the marginal damage caused by this pollution, valued by
its shadow price. In the benchmark pollution control model without delays, this
trade-off takes place between simultaneous emissions, since the emissions at time
t reach the stock at the same instantaneous time t. However in the presence of
delays, this trade-off compares the marginal benefit obtained from emissions at
time t with the damages they cause in the time interval [t+ τ1,t+ τ2]. In order
to value the damages caused by the portion µ(u− t) at each time u during this
period we must use the the current value shadow price of pollution at that time,
x(u), and discounted accordingly over the period [t, u]. Hence the right hand
term of (3).
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3.3 Steady state and sensitivity analysis
From (3) we get the following expression of p(t)

p (t) =
1

θ
f ′−1

(
−α12

θ

∫ t+τ2

t+τ1

x (u) e−ρ(u−t)µ (u− t) du
)

which we can substitute in the dynamics to get the following system with
both leads and lags

{
ċ(t) = −βc(t) + α12

θ

∫ t−τ1
t−τ2 f

′−1
(
−α12

θ

∫ u+τ2
u+τ1

x (s) e−ρ(s−u)µ (s− u) ds
)
µ (t− u) du

ẋ (t) = D′ (c (t)) + x (t) (β + ρ)
(5)

Lemma 1 There exists a unique steady state (c∗, x∗) and

dc∗

dτ1
> 0

dc∗

dτ2
> 0

Proof. According to (5), the steady state satisfies

 βc∗ = α12

θ

∫ τ2
τ1
f ′−1

(
−α12

θ

∫ τ2
τ1
x∗e−ρsµ (s) ds

)
µ (u) du

x∗ = −D
′(c∗)
β+ρ

(6)

Given the properties of f and D, there exists a unique c∗ solving system (6),
that is to say satisfying

H(c; τ1, τ2) = 0 (7)

with

H (c; τ1, τ2) =
θ
∫ τ2
τ1
µ (v) du

α12

∫ τ2
τ1
e−ρsµ (s) ds

f ′
(
θβc

α12

)
− D′ (c)

β + ρ

We can thus conclude that the steady state (x∗, c∗) exists and is unique.
In addition, applying the implicit function theorem to equation (7) we obtain

the following comparative statics results:

dc∗

dτ1
=

− θ
α12

µ(τ1)
∫ τ2
τ1

µ(u)du[e−ρτ1−e−ρs]ds(∫ τ2
τ1

e−ρsµ(s)ds
)2 f ′

(
θβc
α12

)
θ
∫ τ2
τ1

µ(u)du

α12

∫ τ2
τ1

e−ρsµ(s)ds
θβ
α12

f (2)
(
θβc
α12

)
− D(2)(c)

β+ρ

> 0

dc∗

dτ2
=
− θ
α12

µ(τ2)
∫ τ2
τ1

(e−ρs−e−ρτ2)µ(s)ds
(
∫ τ2
τ1

e−ρsµ(s)ds)2
f ′
(
θβc
α12

)
θ
∫ τ2
τ1

µ(u)du

α12

∫ τ2
τ1

e−ρsµ(s)ds
θβ
α12

f (2)
(
θβc
α12

)
− D(2)(c)

β+ρ

> 0
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Lemma 1 shows that the existence of a unique steady state is preserved and
the comparative statics properties of distributed delay on the optimal accumula-
tion are similar to those of the discrete delay case. Whether there is an increase
in the lower bound τ1 or the upper bound τ2 of the delay time interval, it will
decrease the present value of future damages and favor a higher accumulation
of pollution c∗ according to the accelerated discounting mechanism highlighted
in the previous section.

3.4 Analytical characterization of the dynamics
3.4.1 Saddle point configuration and stability

We are now going to study the local dynamics in the neighborhood of the steady
state and determine the conditions under which the latter is a saddle point. For
the rest of our analysis we define B such that

B =
(α12

θ

)2 D(2)
∗

f
(2)
∗

where f (2)∗ = f
(2)
∗ (θp∗) and D(2)

∗ = D
(2)
∗ (c∗).

Our economic interpretation of the dynamic properties of the system will
revolve around the (absolute) value of the (negative) parameter B.

Linearizing (5) around the steady state yields the following system:

{
ċ (t) = −βc− (α12)

2

θ2f
(2)
∗

∫ t−τ1
t−τ2

∫ u+τ2
u+τ1

x (s) e−ρ(s−u)µ (s− u) ds µ (t− u) du

ẋ (t) = D
(2)
∗ c (t) + x (t) (β + ρ)

(8)

We compute the characteristic equation ∆ (λ) = 0 of system (8) where ∆ (λ)
is defined as

∆ (λ) = det

(
λ+ β (α12)

2

θ2f ′′∗

∫ τ2
τ1
µ (s)

∫ τ2
τ1
eλ(u−s)e−ρuµ (u) duds

−D(2)
∗ λ− (β + ρ)

)

Hence

∆ (λ) = (λ+ β) (λ− (β + ρ)) +B

∫ τ2

τ1

µ (s) e−λs
∫ τ2

τ1

e−(ρ−λ)uµ (u) duds (9)

The stability properties of the system will depend on the localization of the
complex roots of the characteristic equation ∆ (λ) = 0. Characteristic equations
of MFDEs are known to have an infinite number of complex isolated roots with
positive and negative real part. Moreover, in our case it can be easily proved
by replacing λ by (ρ − λ) in the characteristic equation that these roots are
symmetric along the axis ζ = ρ

2 .
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We first look at the conditions to have a saddle configuration. In that case
there must not be any pure imaginary roots. If pure imaginary roots did exist,
by solving equation ∆ (iq) = 0 and splitting the real and imaginary parts, we
would get


−q2 − (β + ρ)β +B

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρuµ (u) cos (q (s− u)) duds = 0(10)

−qρ+B

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρuµ (u) sin (q (u− s)) duds = 0 (11)

Let us state the following conditions:

Condition 1 B > BS1 where BS1 is defined as

BS1 =
ρ∫ τ2

τ1

∫ τ2
τ1
µ (s) e−ρuµ (u) (u− s) duds−

∫ τ2
τ1

∫ τ2
s
µ (s) e−ρuµ (u) [1.218 (u− s)] duds

Condition 2 B > BS2 where BS2 is defined as

BS2 =

−

(((
(β + ρ)β + ρ2

2

)2
+ (β + ρ)β

)2

+
((

(β + ρ)β + ρ2

2

)
ρ
)2) 1

2

(∫ τ2
τ1
µ2 (s) ds

∫ τ2
τ1
e−2ρuµ2 (u)

) 1
2

Lemma 2 If B > BS = min[BS1, BS2], the steady state is a saddle point.

Proof. The proof, given in B.2, relies on the fact that if Condition 1 or Condi-
tion 2 holds, ∆ (λ) = 0 has no pure imaginary roots. Since the equation has an
infinity of roots with negative and positive real parts, we have a saddle point
configuration.

Lemma 2 establishes the existence of saddle configuration. In order to char-
acterize more precisely the saddle property, we can reformulate the problem by
noticing that the MFDE in system (5) depends only on the delay τ1 − τ2 and
on the advance τ2 − τ1. This property relies on the fact that the problem, as
in the single discrete delay setting (see Section 2.2), can be decomposed into
two phases. Indeed, knowing p(σ) for σ ∈ [−τ2, 0) enables us to compute c (t) ,
for t ∈ [0, τ1] and to isolate the corresponding damages over which no control
can be exerted. Using the change of variable p (t− τ1) = q (t), the objective
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function can then be rewritten,∫ τ1

0

−D (c (t)) e−ρtdt+ max
q(.)

∫ ∞
τ1

[f (θq (t)) eρτ1 −D (c (t))] e−ρtdt (12)

s.t. ċ (t) = −βc (t) + α12

∫ t

t+τ1−τ2
q(u+ t)µ(u− τ1)du

c(σ) = c0 (σ) ∈ C ([−τ2 + 2τ1, τ1]) given for σ ∈ [−τ2 + 2τ1, τ1]

q(σ) = q0 (σ) ∈ CB ([−τ2 + 2τ1, τ1)) given for σ ∈ [−τ2 + 2τ1, τ1)

We can thus focus on the second term of the program (12). Although the
problem depends highly on initial conditions being given on [−τ2, 0] for the state
variable and [−τ2, 0) for the control variable, the long run dynamic can be refor-
mulated in term of initial conditions on an interval of length (τ2 − τ1). Taking
this into consideration, the MFDE (5) that arises from the first order condi-
tions of the reformulated problem corresponds to an operator mathematically
operating on state C ([−τ2 + 2τ1, τ1]).

According to our previous conditions which rule out the existence of imagi-
nary roots, there exists two sets S and U such that

S ⊕ U = C ([−τ2 + 2τ1, τ1])

where S ⊂ C ([−τ2 + 2τ1, τ1]) is the set of initial functions leading to conver-
gent solutions as time tends to infinity, and U ⊂ C ([−τ2 + 2τ1, τ1]) is the set of
initial functions leading to convergent solutions as time tends to minus infinity.
This property means that the dynamics can be projected on a stable manifold
which is of infinite dimension. The dynamics on the stable manifold can ei-
ther be monotonous or may display damped oscillations: the following Lemma
distinguishes these cases.

Lemma 3 Assuming Condition 1 or Condition 2 hold, there exists a unique
scalar BD such that, if B < BD, the optimal path displays damped oscillations
in the neighborhood of the steady state. Otherwise, the optimal path may be
monotonous.

Proof. The proof, detailed in B.3, relies on the demonstration that there exists
a unique scalar BD such that ∆ (λ) = 0 has respectively 0 or 4 real roots if
B < BD or B > BD. The case B = BD is a non-generic case with a root
λD = λ(BD) solving ∆(λD) = 0 and ∆′(λD) = 0.

Lemma 3 implies that when we study the monotonicity of optimal paths in
this complex framework of distributed delays we are faced with two possibilities.
If B < BD then the optimal path will display an oscillatory behavior. However
if B > BD, the optimal path will be characterized by oscillations in the short
term but it will eventually converge towards our unique steady state (c∗, x∗). In
that case, the appropriate shadow price, implemented through a pigovian tax
for example, will set the system on the optimal pollution path that will reach
the desirable steady state in the long run, despite possible initial oscillations.
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3.4.2 Pure imaginary roots and Hopf bifurcation

We have given in Lemma 2 the conditions under which no pure imaginary roots
can occur. Let us now study the case where pure imaginary roots exist and the
potential consequences in terms of limit cycles.

Let us state the following conditions:

Condition 3 B < BH1 where BH1 is defined as

BH1 = ρ

(∫ τ2

τ1

∫ τ2

τ1

(u− s) e−ρuµ (u) duds

)−1

Condition 4 B < BH2 where BH2 is defined as

BH2 =
− (β + ρ)β(∫ τ2

τ1
µ (s) ds

)(∫ τ2
τ1
e−ρuµ (u) du

)

Condition 5 B < BH3 where BH3 is defined as

BH3 = −2

(∫ τ2

τ1

∫ τ2

τ1

(u− s)2 e−ρuµ (u) duds

)−1

Lemma 4 The optimal path will give rise to Hopf bifurcations if B < BH where
BH = min[BH1, BH2, BH3].

Proof. We show in B.4 that if Conditions 3, 4 and 5 hold simultaneously, the
conditions for the application of the Hopf bifurcation theorem are met.

Lemma (4) provides an interesting addition to the literature on limit cycles in
an infinite dimensional control setting as it sheds some light on the key structural
parameters that thought to cause these cycles. In terms of environmental policy,
our model shows that if the conditions above hold, a cyclical policy around the
steady state will be optimal, alternating pollution accumulation and pollution
reduction phases through significant variations of the optimal emission level,
implemented in turn by the shadow price of pollution.

3.5 Discussion
Consistency of the dynamics characterization

Let us first verify that our results on the dynamic properties of the optimal
pollution path are consistent. It can be easily shown by comparing ϕ̃ and ϕ(0)
that BS1 > BH1. Similarly, using the Jensen inequality we can show that
BS2 > BH2. We can thus deduce, that for any value of BH3
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min[BS1, BS2] > min[BH1, BH2, BH3]

and thus

B > BS ⇒ B > BH

B < BH ⇒ B < BS

Hence if B is such that the necessary conditions for saddle stability hold,
then at least one condition for the occurrence of a Hopf bifurcation does not
hold and conversely. We can thus represent on Figure 4 the spectrum of the
dynamic behavior of the optimal pollution path depending on the absolute value
of B.

In terms of environmental policy, a cyclical policy around the steady state
will be optimal in the limit cycles regime (|B| > BH), alternating pollution ac-
cumulation and pollution reduction phases through significant variations of the
optimal emission level, implemented in turn by the shadow price of pollution.
Such limit cycles rarely arise in standard optimal pollution control problem, ex-
cept in the presence of non-convexities (Tahvonen and Salo, 1996) or adjustment
costs (Wirl, 1999).

Figure 4: Dynamic Properties of the optimal path depending on |B|

Discussion of the determinants of B

In order to discuss the operational power of our model let us discuss the features
that determine the regime of the optimal path. The latter depends heavily on the
absolute value of B. To keep our economic interpretation as clear as possible,
we shall start by distinguishing within B two components: the technological
ratio α12

θ and the preference ratio D(2)
∗

f
(2)
∗

.
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Technological ratio It is straightforward that a higher θ leads to a smaller
|B|. As a result, optimal policies derived from our model will be (locally)
monotonous ceteris paribus in a setting where the polluting byproduct of the
economic activity is high, and as this technology improves, the likelihood of
oscillations, and then of limit cycles, increases.

The second component of the technological ratio is α12 = 1∫ τ2
τ1

µ(s)ds
. For a

given measure µ, a contraction (respectively an extension) of the delay interval
[τ1, τ2] through either bound will lead to a higher (smaller) |B|. The occurrence
of limit cycles, and, to a smaller extent, of damped oscillations, will thus be less
likely if the time-lag interval is long. It could be argued that this effect is due
to the smoothing effect of a broad distribution of delayed emissions in time that
eventually levels out the oscillations that could arise in more condensed time
interval. This effect is an interesting addition to the determinants of limit cycles
discussed in the literature. Indeed, the focus on short term, via a high discount
rate, has been highlighted by Dockner and Feichtinger (1991) as a favorable
condition for the arising of optimal limit cycles and our result confirms this
finding in a different perspective.

Preference ratio In order to relate more easily our results with the litera-
ture on limit cycles, we will consider our preference ratio D(2)

∗

f
(2)
∗

as an indicator
of the concavity of our (separable) objective function. High absolute values
for this ratio, that is to say a highly convex damage function and/or a highly
concave benefit function, reflect weakly green social preferences that attribute a
significant value to marginal environmental damages but are not so strong as to
forbid any pollution at all. These weakly green preferences have been identified
by Wirl (1999) in a model without delays as potential determinants of limit cy-
cles in two dimensional control problems. Our analytical characterization thus
complete these previous results by identifying the conditions of occurrence of
limit cycles in infinite dimension control problems complexified by the intro-
duction of distributed delays that disturb the time frame of the model. If the
preferences are less green, then the optimal policy will be stable, although it
might involve damped oscillations.

If we separate the sources of the concavity of our separable objective function,
we observe that the case corresponding to a monotonous optimal policy is the
case of a damage function that is not too convex and a benefit function that is
concave enough. This situation fits quite well various cases of pollution when
the economic yield of the polluters depends only partially on the amount of
pollution emitted and when the damages do not increase too steeply with the
stock. For example in the case of nitrate contamination we can consider that
the most important part of the damages is done once the stock has reached the
threshold that makes drinking water improper for consumption or that triggers
eutrophication of water bodies.
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4 Conclusion
We have developed an original characterization of a little known class of infinite
dimension optimal control models including distributed delays and a separable
objective function. Our work highlights the need to account for the significant
time delays that can be involved in pollution accumulation problems. Mod-
eling explicitly these time delays allows to reflect the spatial heterogeneity or
the disturbances in the accumulation processes that characterize various pol-
lution problems. These delays might explain why some recent environmental
policies targeting pollution reduction, in the field of nitrate regulation for ex-
ample, have failed to show significant results yet. But their presence in the
standard pollution control model modifies quantitatively and qualitatively the
optimal pollution path properties and gives rise to complex dynamics. From a
quantitative standpoint we have shown that the greater the delay, the higher the
pollution stock at equilibrium and the less stringent the optimal environmental
tax. From a qualitative perspective, the dynamic properties of the model are
deeply disturbed because MFDEs are involved.

To face this challenge, we have developed a method that allows us, while
preserving generic functional forms and a very general distribution structure, to
assess the main properties of the optimal path and the conditions of stability and
oscillations. Our analysis has led us in particular to determine the conditions
of occurrence of limit cycles, which are rather original for this kind of standard
pollution control problem. Our results enrich the literature on limit cycles by
extending Wirl’s conclusions on the role of weakly green preferences.

Our contribution sets a robust ground that can be extended to a wider range
of economic problems beyond the realm of pollution control. We trust it can help
to address better the analytical difficulties at stake in many dynamic economic
setting where complex delays play a significant role such as capital accumulation
or advertising policies.
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A Single discrete delay model

A.1 Preliminary results
With constant time lags τ between nitrate emissions and nitrate accumulation
the motion equation is now written: ċ (t) = −βc (t)+p (t− τ). We shall solve the
new program faced by the social planner in a different manner than Bourgeois
and Jayet (2011) that will be useful to solve the general case of distributed
delays.

max
p(.)

∫ ∞
0

[f (θp (t))−D (c (t))] e−ρtdt

s.t. ċ (t) = −βc (t) + p (t− τ)

c(σ) = c0 (σ) ∈ C ([−τ, 0]) given for σ ∈ [−τ, 0]

p(σ) = p0 (σ) ∈ CB ([−τ, 0)) given for σ ∈ [−τ, 0)

The Hamiltonian is

[f (θp (t))−D (c (t))] e−ρt + ξ (t) [−βc (t) + p (t− τ)]

Given that the Hamiltonian is concave, we have the following first order condi-
tions, with x (t) = ξ (t) eρt the current value shadow price of pollution along the
optimal path.

θf ′ (θp (t)) = −x (t+ τ) e−ρτ (13)

ẋ (t) = D′ (c (t)) + x (t) (β + ρ) (14)

and we have the transversality condition

lim
t→∞

c (t)x (t) e−ρt = 0

Deriving (13) with respect to time t and combining with (14) yields
ṗ (t) =

d−(x(t+τ)e−ρτ )
dt

θ2f (2) (θp (t))

ṗ (t) =
− (D′ (c (t+ τ)) + x (t+ τ) (β + ρ)) e−ρτ

θ2f (2) (θp (t))

With the change of variable p (t− τ) = q (t) and the substitution of x(t+ τ) by its
value − θ1f

′ (θp (t)) eρτ in (14), the system depending on the variables (c(t), p(t))
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becomes a new system in terms of (c(t), q(t)) where the dynamics of c(t) and
q(t) involve only variables taken at time t. q̇ (t) =

−e−ρτD′ (c (t)) + θf ′ (θq (t)) (β + ρ)

θ2f (2) (θq (t))

ċ (t) = −βc (t) + q (t)

(15)

which allows us to draw the phase diagram presented in Figure 1 and to prove the
following Lemmas.

A.2 Proof of Lemma 5
Lemma 5 There is a unique steady state (c∗, q∗) and the higher the delay, the
higher the stock of pollution (and consequently the higher the emission level) at
the steady state

From (15) we know that the steady state solves
βc = q

e−ρτD′
(
q

β

)
= θf ′ (θq) (β + ρ)

(16)

Given the properties of f and D, we can establish that e−ρτD′
(
q
β

)
is an increasing

function of q and that θf ′ (θq) (β + ρ) is a decreasing function of q. Therefore
there exists a unique q∗ that solves (16), and a unique steady state (c∗, q∗).

Let us consider F (q, τ) = e−ρτD′
(
q
β

)
− θf ′ (θq) (β + ρ). As F ′q 6= 0, we can apply

the implicit function theorem and get

dq∗τ
dτ

=
ρe−ρτD′

(
q∗

β

)
1
β e
−ρτD(2)

(
q
β

)
− θ2f (2) (θq) (β + ρ)

> 0

dc∗τ
dτ

=
ρ 1
β e
−ρτD′

(
q
β

)
1
β e
−ρτD(2)

(
q
β

)
− θ2f (2) (θq) (β + ρ)

> 0

A.3 Proof of Lemma 6
Lemma 6 Dynamics on the optimal path are monotonous

Global analysis:
The isocline ṗ = 0 is the graph of a function ψp (p) = c with

ψ′p (p) =
θ2f (2) (θp) (β + ρ)

e−τρD(2) (c)
< 0

and the isocline ċ = 0 is the graph of a function ψc (p) = c, with ψc = 1
β p.
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A.4 Proof of Lemma 7
Lemma 7 The steady state is a saddle point. The eigenvalues of the Jacobian

related to system (16) are λ± =
ρ±

√
ρ2+4

(
β(β+ρ)− e

−ρτD(2)
∗

θ2f
(2)
∗

)
2 .

The Jacobian matrix computed in the neighborhood of the steady state can be
written  q̇ (t) =

−e−ρτD(2) (c∗τ )

θ2f (2) (θq (t))
c (t) + (β + ρ) q (t)

ċ (t) = −βc (t) + q (t)

The characteristic polynomial is thus

X2 − ρX −

(
β (β + ρ)− e−ρτ D

(2)
∗

θ2f
(2)
∗

)

The steady state admits eigenvalues λ− < 0 < λ+ of opposite signs, therefore it is
a saddle point. These eigenvalues are defined as:

λ± =

ρ±
√
ρ2 + 4

(
β (β + ρ)− e−ρτD

(2)
∗

θ2f
(2)
∗

)
2

B Distributed delays model

B.1 Application of Fubini’s theorem

∫ ∞
0

ξ (t)

∫ t−τ1

t−τ2
p (u)µ (t− u) dudt

=

∫ ∞
0

ξ (t)

∫ 0

t−τ2
p (u)µ (t− u) dudt+

∫ ∞
0

ξ (t)

∫ t−τ1

0

p (u)µ (t− u) dudt

=

∫ τ2

0

ξ (t)

∫ 0

t−τ2
p (u)µ (t− u) dudt−

∫ ∞
τ2

ξ (t)

∫ t−τ2

0

p (u)µ (t− u) dudt

−
∫ τ1

0

ξ (t)

∫ 0

t−τ1
p (u)µ (t− u) dudt+

∫ ∞
τ1

ξ (t)

∫ t−τ1

0

p (u)µ (t− u) dudt

=

∫ 0

−τ2
p (u)

∫ u+τ2

0

ξ (t)µ (t− u) dtdu−
∫ ∞
0

p (u)

∫ ∞
u+τ2

ξ (t)µ (t− u) dtdu

−
∫ 0

−τ1
p (u)

∫ u+τ1

0

ξ (t)µ (t− u) dtdu+

∫ ∞
0

p (u)

∫ ∞
u+τ1

ξ (t)µ (t− u) dtdu
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∫ ∞
0

ξ (t)

∫ t−τ1

t−τ2
p (u)µ (t− u) dudt

=

∫ 0

−τ2
p (u)

∫ u+τ2

0

ξ (t)µ (t− u) dtdu−
∫ 0

−τ1
p (u)

∫ u+τ1

0

ξ (t)µ (t− u) dtdu

+

∫ ∞
0

p (u)

∫ u+τ2

u+τ1

ξ (t)µ (t− u) dtdu

B.2 Proof of Lemma 2
As the characteristic equation we consider corresponds to an MFDE, there is
an infinite number of complex roots with positive real part and negative real
part. In order to prove that the steady state is a saddle point we thus need to
prove that the characteristic equation admits no pure imaginary roots if either
Condition 1 or Condition 2 hold.

Condition 1

A necessary condition to have a pure imaginary root is that equation Im∆ (iq) =
0 is solved, which corresponds to equation (11). This equation can be re-written
as:

ρ

B
= ϕ (q) (17)

with

ϕ (q) =

∫ τ2
τ1

∫ τ2
τ1
µ (s) e−ρuµ (u) sin (q (u− s)) duds

q

We now would like to prove that ϕ (q) is greater than some (negative) constant ϕ̃.

ϕ (q) =

∫ τ2
τ1

∫ s
τ1
µ (s) e−ρuµ (u) sin (q (u− s)) duds

q
+

∫ τ2
τ1

∫ τ2
s
µ (s) e−ρuµ (u) sin (q (u− s)) duds

q

Moreover, if u− s < 0, we have sin(q(u−s))
q > (u− s). The previous expression can

thus be rewritten as

ϕ (q) >

∫ τ2

τ1

∫ s

τ1

µ (s) e−ρuµ (u) (u− s) duds+

∫ τ2
τ1

∫ τ2
s
µ (s) e−ρuµ (u) sin (q (u− s)) duds

q

>

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρuµ (u) (u− s) duds+

∫ τ2

τ1

∫ τ2

s

µ (s) e−ρuµ (u)

[
sin (q (u− s))

q
− (u− s)

]
duds

It is known that sin(q)
q > −0.218. We thus deduce that if u−s > 0, then sin(q(u−s))

q >

−0.218 (u− s) . Hence

ϕ (q) >

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρuµ (u) (u− s) duds−
∫ τ2

τ1

∫ τ2

s

µ (s) e−ρuµ (u) [1.218 (u− s)] duds

> ϕ (0)−
∫ τ2

τ1

∫ τ2

s

µ (s) e−ρuµ (u) [1.218 (u− s)] duds
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and since

ϕ (0) =

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρuµ (u) (u− s) duds

=

∫ τ2

τ1

µ (s) ds

∫ τ2

τ1

e−ρuuµ (u) du−
∫ τ2

τ1

µ (u)uds

∫ τ2

τ1

e−ρuµ (u) du

<

∫ τ2

τ1

µ (s) ds

∫ τ2

τ1

e−ρuuµ (u) du−
∫ τ2

τ1

µ (u)uds

∫ τ2

τ1

µ (u) du

<

∫ τ2

τ1

µ (s) ds

∫ τ2

τ1

(
e−ρu − 1

)
uµ (u) du

< 0

we have
ϕ̃ = ϕ (0)−

∫ τ2

τ1

∫ τ2

s

µ (s) e−ρuµ (u) [1.218 (u− s)] duds < 0.

Thus if ρ
B < ϕ̃, equation ρ

B = ϕ(q) has no roots and therefore the characteristic
equation has no pure imaginary roots. This condition amounts to B > BS1.

Condition 2

Using trigonometric forms, system (10,11), which supposes the existence of pure
imaginary roots, can be written as


−q2 − (β + ρ)β +B

( ∫ τ2
τ1
µ (s) cos (qs) ds

∫ τ2
τ1
e−ρu cos (qu)µ (u)

+
∫ τ2
τ1
µ (s) sin (qs) ds

∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)
= 0

−qρ+B

(
−
∫ τ2
τ1
µ (s) sin (qs) ds

∫ τ2
τ1
e−ρu cos (qu)µ (u) du

+
∫ τ2
τ1
µ (s) cos (qs) ds

∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)
= 0

and 
q2 + (β + ρ)β = B

( ∫ τ2
τ1
µ (s) cos (qs) ds

∫ τ2
τ1
e−ρu cos (qu)µ (u) du

+
∫ τ2
τ1
µ (s) sin (qs) ds

∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)
qρ = B

(
−
∫ τ2
τ1
µ (s) sin (qs) ds

∫ τ2
τ1
e−ρu cos (qu)µ (u) du

+
∫ τ2
τ1
µ (s) cos (qs) ds

∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)
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Squaring up both sides of the real and imaginary part, we get

(
q2 + (β + ρ)β

)2
= B2


(∫ τ2

τ1
µ (s) cos (qs) ds

)2 (∫ τ2
τ1
e−ρu cos (qu)µ (u) du

)2
+
(∫ τ2

τ1
µ (s) sin (qs) ds

)2 (∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)2
+2

( ∫ τ2
τ1
µ (s) cos (qs) ds

∫ τ2
τ1
e−ρu cos (qu)µ (u) du∫ τ2

τ1
µ (s) sin (qs) ds

∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)


(qρ)
2

= B2


(∫ τ2

τ1
µ (s) sin (qs) ds

)2 (∫ τ2
τ1
e−ρu cos (qu)µ (u) du

)2
+
(∫ τ2

τ1
µ (s) cos (qs) ds

)2 (∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)2
−2

( ∫ τ2
τ1
µ (s) sin (qs) ds

∫ τ2
τ1
e−ρu cos (qu)µ (u) du∫ τ2

τ1
µ (s) cos (qs) ds

∫ τ2
τ1
e−ρu sin (qu)µ (u) du

)


Summing both expressions yields

(
q2 + (β + ρ)β

)2
+(qρ)

2
= B2


[(∫ τ2

τ1
µ (s) cos (qs) ds

)2
+
(∫ τ2

τ1
µ (s) sin (qs) ds

)2]
∗[(∫ τ2

τ1
e−ρu cos (qu)µ (u) du

)2
+
(∫ τ2

τ1
e−ρu sin (qu)µ (u) du

)2]


(18)
Let us define P (q) such that

P (q) =
(
q2 + (β + ρ)β

)2
+(qρ)

2−B2


[(∫ τ2

τ1
µ (s) cos (qs) ds

)2
+
(∫ τ2

τ1
µ (s) sin (qs) ds

)2]
∗[(∫ τ2

τ1
e−ρu cos (qu)µ (u) du

)2
+
(∫ τ2

τ1
e−ρu sin (qu)µ (u) du

)2]


Equation (18) that gives us a necessary condition for having pure imaginary roots
can then be rewritten

P (q) = 0 (19)

We can consider the function Q such that

Q(q) =
(
q2 + (β + ρ)β

)2
+ (qρ)

2 −B2

∫ τ2

τ1

µ2 (s) ds

∫ τ2

τ1

e−2ρuµ2 (u)

and since
[(∫ τ2

τ1
µ (s) cos (qs) ds

)2
+
(∫ τ2

τ1
µ (s) sin (qs) ds

)2]
∗[(∫ τ2

τ1
e−ρu cos (qu)µ (u) du

)2
+
(∫ τ2

τ1
e−ρu sin (qu)µ (u) du

)2]
 <

∫ τ2

τ1

µ2 (s) ds

∫ τ2

τ1

e−2ρuµ2 (u)

we have
P (q) > Q (q)

Q is a quadratic function in q2. Let us denote Qmin = minq Q (q). If Qmin > 0,
there exist no root q such that Q (q) = 0, and thus no root such that P (q) = 0.
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Qmin can be computed as

Qmin = Q

(
(β + ρ)β +

ρ2

2

)

=

((
(β + ρ)β +

ρ2

2

)2

+ (β + ρ)β

)2

+

((
(β + ρ)β +

ρ2

2

)
ρ

)2

−B2

∫ τ2

τ1

µ2 (s) ds

∫ τ2

τ1

e−2ρuµ2 (u)

Hence Qmin > 0 implies((
(β + ρ)β + ρ2

2

)2
+ (β + ρ)β

)2

+
((

(β + ρ)β + ρ2

2

)
ρ
)2

∫ τ2
τ1
µ2 (s) ds

∫ τ2
τ1
e−2ρuµ2 (u)

> B2 (20)

which is tantamount to Condition 2 since B is negative by definition.

B.3 Proof of Lemma 3
Let us focus on the real roots of ∆(λ) = 0. As the roots are symmetric according
to the line Re(λ) = rho

2 axis, we can study exclusively the roots with a real part
smaller than rho

2 .
We start by noticing that ∆

(
ρ
2

)
< 0, and limλ→∞∆ (λ) = −∞

Since

∆ (λ) = (λ+ β) (λ− (β + ρ)) +B

∫ τ2

τ1

µ (s) e−λs
∫ τ2

τ1

e−(ρ−λ)uµ (u) duds

its derivative according to λ is given by

∆′ (λ) = 2λ− ρ+B

∫ τ2

τ1

µ (s) e−
ρ
2 s

∫ τ2

τ1

(u− s) e−
ρ
2 (u−s)e−

ρ
2ueλ(u−s)µ (u) duds

We notice that ∫ τ2

τ1

µ (s) e−
ρ
2 s

∫ τ2

τ1

(u− s) e−
ρ
2uµ (u) duds = 0

Hence

∆′ (λ) = 2
(
λ− ρ

2

)
+B

∫ τ2

τ1

µ (s) e−
ρ
2 s

∫ τ2

τ1

(u− s) e−
ρ
2u
[
e(λ−

ρ
2 )(u−s) − 1

]
µ (u) duds

Therefore roots of ∆′ (λ) = 0 are ρ
2 and roots of ϕ (λ) = 0, where ϕ is given by:

ϕ (λ) = 2 +B

∫ τ2

τ1

µ (s) e−
ρ
2 s

∫ τ2

τ1

(u− s) e−
ρ
2u

[∫ (u−s)

0

e(λ−
ρ
2 )zdz

]
µ (u) duds
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Moreover:

ϕ(2) (λ) = B

∫ τ2

τ1

µ (s) e−
ρ
2 s

∫ τ2

τ1

(u− s) e−
ρ
2u

[∫ (u−s)

0

z2e(λ−
ρ
2 )zdz

]
µ (u) duds < 0

As ϕ (λ) = ϕ (ρ− λ) , the roots of ϕ are also symmetric according to the line
Re (λ) = ρ

2 . The sign of ϕ
(
ρ
2

)
= 2+B

∫ τ2
τ1
µ (s) e−

ρ
2 s
∫ τ2
τ1

(u− s)2 µ (u) e−
ρ
2ududs

depends on B. For B small enough it is negative, otherwise it can be positive.
We can thus deduce that, if ϕ

(
ρ
2

)
< 0 it means that ϕ(λ) < 0 and since

∆′ (λ) = (λ − ρ
2 )ϕ(λ), it implies that ∆′ (λ) < 0 if λ > ρ

2 and ∆′ (λ) > 0 if
λ < ρ

2 . Thus, as ∆
(
ρ
2

)
< 0, there are no real roots to the equation ∆ (λ) = 0

when B < −2∫ τ2
τ1

µ(s)e−
ρ
2
s ∫ τ2
τ1

(u−s)e−
ρ
2
uµ(u)duds

Otherwise if ϕ
(
ρ
2

)
> 0, then there exists a unique value λ̂ (B) < ρ

2 such that

ϕ
(
λ̂ (B)

)
= 0.

We are now going to prove that ∆
(
λ̂ (B)

)
is increasing in B.

Taylor expansion of ∆
(
λ̂ (B)

)
in the neighborhood of B can be written as

∆
(
λ̂ (B + ε)

)
= ∆

(
λ̂ (B) + ελ̂′ (B) + ε2λ̂(2) (B) + o

(
ε2
))

= ∆
(
λ̂ (B) + ελ̂′ (B) + ε2λ̂(2) (B) + o

(
ε2
))

= ∆
(
λ̂ (B)

)
+ ελ̂′ (B) ∆′

(
λ̂ (B)

)
+

1

2
ε2
(

∆′
(
λ̂ (B)

)
λ̂(2) (B) + ∆(2)

(
λ̂ (B)

)(
λ̂′ (B)

)2)
+ o

(
ε2
)

According to the definition of λ̂ (B) ,

∆
(
λ̂ (B + ε)

)
−∆

(
λ̂ (B)

)
=

1

2

(
∆(2)

(
λ̂ (B)

)(
λ̂′ (B)

)2)
+ o

(
ε2
)
< 0

We have already seen that for B small enough, ∆
(
λ̂ (B)

)
< 0, since for every value

of λ,∆
(
λ̂ (B)

)
< 0.

Moreover, since we have ∆
(
λ̂ (B)

)
increasing in B and ∆

(
λ̂ (B)

)
very high when

B approaches 0, we can conclude that there exists a unique value BD of B such
that ∆

(
λ̂
(
BD
))

= ∆′
(
λ̂
(
BD
))

= 0.

For B inferior to BD or superior to BD, we thus have respectively 0 or 2 real
roots with real parts smaller than ρ

2 which means 0 or 4 real roots due to the
symmetry.
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B.4 Proof of Lemma 4
In order to apply the Hopf bifurcation theorem we need to prove that under the
conditions given, there exists at least one value of a critical parameter BH such
that for B = BH the characteristic equation admits at least one pair of purely
imaginary root and then to show that these roots are simple roots and that the
crossing velocity of the imaginary axis in the neighborhood of the imaginary
solution does not vanish. BH will be such that BH = min[BH1, BH2, BH3].

Conditions 3 and 4 will ensure that the existence of pure imaginary roots and
the characterization of the corresponding critical parameter. Condition 5 will
guarantee that these roots are simple roots.

Existence of imaginary roots and characterization of the critical pa-
rameter

According to expression (17) in the proof B.2, a sufficient condition to have at
least one solution to equation Im (∆ (iq)) = 0 is that B < ρ(ϕ(0))−1, where
ϕ(0) =

∫ τ2
τ1

∫ τ2
τ1

(u− s) e−ρuµ (u) duds, which corresponds to Condition 3.
Let us assume that there exist a pure imaginary root iq. According to the previous

expression (19), it solves P (q) = 0, where P (q) has been defined as

P (q) =
(
q2 + (β + ρ)β

)2
+(qρ)

2−B2


[(∫ τ2

τ1
µ (s) cos (qs) ds

)2
+
(∫ τ2

τ1
µ (s) sin (qs) ds

)2]
∗[(∫ τ2

τ1
e−ρu cos (qu)µ (u) du

)2
+
(∫ τ2

τ1
e−ρu sin (qu)µ (u) du

)2]


Let us remind that P is an even function, thus we just need to study positive roots
q.

Since limq→±∞ P (q) = ∞, a sufficient condition to have at least one positive real
root is P (0) < 0. Condition 4 is a sufficient condition for P (0) < 0. If Condition
4 holds, we can thus consider qr, one of the roots of P (q) = 0 and characterize
the critical parameter.

Using Im(∆(iqr)) = 0, we can then compute the corresponding critical parameter
BHr such that

BHr =
qrρ∫ τ2

τ1

∫ τ2
τ1
µ (s) e−ρuµ (u) sin (qr (u− s)) duds

Simple roots

We need now to rule out the cases where qr could be a double complex root. If
qr were a double root, it would solve ∆′ (iq) = 0, that is to say{

Re∆′ (iq) = 0
Im∆′ (iq) = 0
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with

Re∆′ (iq) = −ρ+B

∫ τ2

τ1

∫ τ2

τ1

(u− s) e−ρuµ (s) cos (q (u− s))µ (u) duds

Im∆′ (iq) = 2q +B

∫ τ2

τ1

∫ τ2

τ1

(u− s) e−ρuµ (s) sin (q (u− s))µ (u) duds

A necessary condition to have a double root is to have Im∆′ (iq) = 0, for q > 0.
But

Im∆′ (iq)

q
= 2 +B

∫ τ2

τ1

∫ τ2

τ1

(u− s)2 e−ρuµ (s)
sin (q (u− s))
q (u− s)

µ (u) duds

< 2 +B

∫ τ2

τ1

∫ τ2

τ1

(u− s)2 e−ρuµ (s)µ (u) duds

Given the definition of B, we have

Im∆′ (iq)

q
< 0

Therefore if Condition 5 holds, the roots qr cannot be double roots.

Crossing velocity

It remains to prove that roots cross the imaginary axis transversally.
Considering ∆(λ) = 0 as a function of parameter B, we can compute the total

differentiation of the characteristic equation to get

∆′ (λ) dλ = −
(∫ τ2

τ1

µ (s) e−λs
∫ τ2

τ1

e−(ρ−λ)uµ (u) duds

)
dB

thus (
dλ

dB

)−1
=

2λ− ρ+B
∫ τ2
τ1

∫ τ2
τ1
µ (s) e−ρueλ(u−s)µ (u) duds

−
(∫ τ2

τ1
µ (s) e−λs

∫ τ2
τ1
e−(ρ−λ)uµ (u) duds

)
as λ is a root of ∆ (λ) = 0, the previous equation can be rewritten as(

dλ

dB

)−1
= B

2λ− ρ+B
∫ τ2
τ1

∫ τ2
τ1
µ (s) e−ρueλ(u−s)µ (u) duds

(λ+ β) (λ− ρ− β)

Let us now study the sign of dRe(λ)
dB . We have

sign

(
dRe (λ)

dB

)
|B=BHr

= sign

(
Re
(
dλ

dB

)−1)
|B=BHr

Hence, using (B.4),

sign

(
dRe (λ)

dB

)
|B=BHr

= sign(M)
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where M is defined as

M =

 (
q2r + β (β + ρ)

) (
−ρ+BHr

∫ τ2
τ1

∫ τ2
τ1
µ (s) e−ρu (u− s) cos (qr (u− s))µ (u) duds

)
+2qrρ

(
2qr +BHr

∫ τ2
τ1

∫ τ2
τ1
µ (s) e−ρu (u− s) sin (qr (u− s))µ (u) duds

) 
but

−ρ+BHr

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρu (u− s) cos (qr (u− s))µ (u) duds

< −ρ+BHr

∫ τ2

τ1

∫ s

τ1

µ (s) e−ρu (u− s) cos (qr (u− s))µ (u) duds

+BHr

∫ τ2

τ1

∫ τ2

s

µ (s) e−ρu (u− s) cos (qr (u− s))µ (u) duds

< −ρ+BHr

∫ τ2

τ1

∫ s

τ1

µ (s) e−ρu (u− s)
(

1− 1

2
(qr (u− s))2

)
µ (u) duds

+BHr

∫ τ2

τ1

∫ τ2

s

µ (s) e−ρu (u− s)µ (u) duds

< −ρ+BHr

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρu (u− s)µ (u) duds

−BHr
1

2

∫ τ2

τ1

∫ s

τ1

µ (s) e−ρu (u− s) qr (u− s)2 µ (u) duds

As
∫ τ2
τ1

∫ τ2
τ1
µ (s) e−ρu (u− s)µ (u) duds = ϕ (0) < 0 and

∫ τ2
τ1

∫ s
τ1
µ (s) e−ρu (u− s) qr (u− s)2 µ (u) duds <

0, then

−ρ+BHr

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρu (u− s) cos (qr (u− s))µ (u) duds < 0

Moreover, according to Condition 5,

2 +BHr

∫ τ2

τ1

∫ τ2

τ1

µ (s) e−ρu (u− s) sin (qr (u− s))
qr

µ (u) duds < 0

thus
sign

(
dRe (λ)

dB

)
|B=BHr

< 0
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