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Réarrangements et Dominance en Quantiles Séquentielle* 

Résumé 

L’analyse distributive implique généralement des comparaisons de distributions où les 
individus se distinguent sur la base de plusieurs attributs. Dans le cas particulier où il y a 
deux attributs et où la distribution de l’un de ces deux attributs est fixée, on peut faire appel 
au critère de la dominance en quantiles séquentielle afin de comparer les distributions. Nous 
montrons que, si une distribution est classée au-dessus d’une autre par le critère de la 
dominance en quantiles séquentielle, alors la distribution dominante peut être obtenue à 
partir de la distribution dominée au moyen d’une suite finie de permutations favorables, et 
réciproquent. Nous présentons deux exemples où les permutations favorables se révèlent 
avoir des implications intéressantes d’un point de vue normatif. 
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Rearrangements and Sequential Rank Order Dominance* 

Abstract 

Distributive analysis typically involves comparisons of distributions where individuals differ in 
more than just one attribute. In the particular case where there are two attributes and 
where the distribution of one of these two attributes is fixed, one can appeal to sequential 
rank order dominance for comparing distributions. We show that sequential rank order 
domination of one distribution over another implies that the dominating distribution can be 
obtained from the dominated one by means of a finite sequence of favourable permutations, 
and conversely. We provide two examples where favourable permutations prove to have 
interesting implications from a normative point of view. 
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1. Introduction

The notion of a progressive transfer has long been known to play a crucial role when one is
interested in the distribution of a single cardinal attribute like income. Transferring part of
the income of a rich individual to a poorer one in such a way that their relative positions are
unchanged reduces inequality in the sense that the Lorenz curve moves upwards. In other
words, the total income possessed by any fraction of the population consisting of the poorest
individuals increases as the result of a progressive transfer. More interestingly, it can been
shown that the converse statement also holds: if one distribution is ranked above another by
the Lorenz criterion, then it can be derived from the latter by a finite sequence of progressive
transfers. This result has important implications from a normative point of view because
the Lorenz ranking of distributions is identical to the ranking implied by utilitarian unanimity
over the class of concave utility functions. Following its proof by Hardy, Littlewood, and Pólya
(1934), the equivalence between the three above statements is known as the Hardy-Littlewood-
Pólya theorem (see also Berge (1963), Dasgupta, Sen, and Starrett (1973), Marshall and Olkin
(1979) among others).

However the ability of income alone to measure a person’s well-being has been challenged
during the last thirty years and there has been an increasing concern for a more comprehensive
approach involving different dimensions of individual well-being. Considering distributions of
two cardinal attributes, Atkinson and Bourguignon (1982) have demonstrated that utilitar-
ian unanimity over the class of utility functions with non-positive cross-derivatives – the so-
called submodular functions – ranks distributions in the same way as first degree bidimensional
stochastic dominance. When one of the two attributes is of an ordinal nature and when in
addition its marginal distribution is fixed, Atkinson and Bourguignon (1987) have shown that
bidimensional first degree stochastic dominance reduces to sequential rank order dominance.
To illustrate things, consider the case where every individual in the population is identified by
her health achievement and her income. Suppose further that an individual’s health achieve-
ment falls into a finite set of ordered categories like “poor”, “fair”, “good”, “very good”, and
“excellent” as it is typically the case in self-reporting questionnaires. The sequential rank
order criterion consists in comparing, first the quantile distributions of income for those in-
dividuals with “poor” health, then the quantile distributions of income for those individuals
in the combined “poor” or “fair” health categories, and so on until all health categories have
been taken into account. If one distribution is ranked above another at each stage of this
process, then it is declared to be better according to the sequential rank order criterion.

First degree bidimensional stochastic dominance is based on the comparisons of the pro-
portion of individuals who are deprived in the two attributes of interest. According to this
criterion, one distribution dominates another if, for all possible two-dimensional thresholds,
there are fewer deprived individuals in the former distribution than in the latter. Like the
Lorenz criterion, the sequential rank order criterion builds on the distributions of income,
but it recognises the importance of the second variable – health achievement in the discussion
above – through the way the distributions of the different categories are assembled. By making
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explicit the interplay between the distribution of income within categories and the distribution
of individuals across categories, the sequential rank order criterion may be considered a more
transparent criterion than the standard bidimensional stochastic dominance, admittedly in the
case where the marginal distributions of the two variables are fixed. Or at least, it provides
a different perspective that complements that given by standard first degree bidimensional
stochastic dominance.

However, the two above mentioned articles failed to identify those elementary transforma-
tions that play a role similar to progressive transfers in a bidimensional framework. Admit-
tedly, Atkinson and Bourguignon (1982) have suggested that correlation decreasing transfor-
mations might be the analogue of progressive transfers when distributions are ordered by first
degree stochastic dominance or equivalently by the rank order criterion. Indeed, it is rather
natural in a bidimensional context to consider that the more correlated the two variables,
the more unequal the situation is. Then, any transfer of densities that leaves unchanged the
marginal distributions and decreases the correlation between the two attributes may be consid-
ered an improvement. Epstein and Tanny (1980) and Tchen (1980) must be credited for having
shown that first degree bidimensional stochastic domination of one distribution by another is
equivalent to the fact that the dominating distribution can be obtained from the dominated
one through successive applications of such correlation decreasing transformations. By com-
bining these different results, one obtains an equivalence between three statements – namely,
utilitarian unanimity over the class of submodular utility functions, bidimensional first degree
stochastic dominance, and appropriate combinations of correlation decreasing transformations
– that is very close to the Hardy-Littlewood-Pólya theorem described above.

The starting point of the present paper is the recognition that the notion of a correla-
tion decreasing transformation is defined by reference to the joint distribution function. As a
consequence, to implement the algorithm designed by Epstein and Tanny (1980) and Tchen
(1980) one must know what the joint distribution functions look like. It might be interesting
to know what is the counterpart of a correlation decreasing transformation if we wanted to
construct an algorithm allowing us to derive the dominating distribution from the dominated
distribution starting now with the sequential quantile curves rather than the joint distribution
functions. Since the sequential rank order dominance and first degree stochastic dominance
coincide when the marginal distributions are fixed, one might object that it makes little sense
to search for such an algorithm: if one distribution dominates another according to the se-
quential rank order criterion, then it can be obtained from the latter by means of correlation
decreasing transformations. However, the meaning of a correlation decreasing transformation
is far from being clear when we are interested in the comparison of bidimensional distributions
for populations consisting of a finite number of individuals. For in this case we face the con-
straint that the densities that are moved on the two-dimensional grid defined by the distinct
values of the two attributes belong to the set of rational numbers. In the limit – and in order
to make things more transparent – we might even want that the densities that are transferred
be all equal to one over n assuming that there are n individuals in the population.
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Moyes (2012) has suggested that favourable permutations might be the elementary transfor-
mations that play a similar role as progressive transfers for sequential rank order dominance.
Given two individuals such that one is (strictly) more deprived than the other in both at-
tributes – for instance, income and health – a favourable permutation consists in exchanging
the incomes of the two individuals so that the individual in bad health is given the income
of the individual in better health who is also the richer. Then, it can be easily shown that
favourable permutations always result in an increase in social welfare when it is evaluated
by the utilitarian rule and when the utility function is submodular (see, e.g., Moyes (2012)).
Admittedly, a favourable permutation is a particular case of a correlation decreasing transfor-
mation where the amount of density transferred is equal to one over some integer and it may
be considered to some extent a more primitive concept.

The organisation of the note is as follows. We devote Section 2 to the simple case where
a single attribute is distributed among individuals and we introduce preliminary results that
will prove to be useful later on. We examine the case of the distribution of two attributes
– one of which is cardinal and the other one ordinal – in Section 3. We present and prove
our main result according to which sequential rank order domination of one distribution by
another implies that the dominating distribution can be obtained from the dominated one by
means of successive favourable permutations. We review in Section 4 two examples that involve
favourable permutations and where the application of the sequential rank order criterion proves
to be of some interest. Section 5 concludes the paper pointing at limitations and possible
extensions. Finally, we provide in Section A an illustration of the algorithm used in the proof
of our main result by means of a simple example.

2. Unidimensional Distributions and Preliminary Results

To begin with, it is convenient to consider the case of distributions of a single attribute for a
fixed and homogeneous population of individuals N := {1, 2, . . . , n} with n = 2. A distribution
for population N is a list u := (u1, . . . , un), where ui ∈ D ⊂ R may be viewed as the income
of individual i, but other interpretations are also possible.

Definition 2.1. Given two income distributions u := (u1, . . . , un),v := (v1, . . . , vn) ∈ Dn, we
say that u component-wise dominates v, which we write u ≥ v, if and only if:

(2.1) uh = vh, ∀ h = 1, 2, . . . , n.

We denote respectively by ∼ and > the symmetric and asymmetric components of ≥ defined in
the usual way, and we further note that u ∼ v if and only if uh = vh, for all h = 1, 2, . . . , n. The
non-decreasing rearrangement of an income distribution u := (u1, . . . , un) ∈ Dn is indicated
by ũ := (ũ1, ũ2, . . . , ũn), where ũ1 5 ũ2 5 · · · 5 ũn.

Definition 2.2. Given two income distributions u := (u1, . . . , un),v := (v1, . . . , vn) ∈ Dn, we
say that u rank order dominates v, which we write u ≥RO v, if and only if:

(2.2) ũh = ṽh, ∀ h = 1, 2, . . . , n.
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The symmetric and asymmetric components of ≥RO are indicated by ∼RO and >RO, respec-
tively, and we note that u ∼RO v if and only if ũh = ṽh, for all h = 1, 2, . . . , n, in which case
u is a permutation of v. Component-wise dominance implies rank-order dominance, but the
converse implication is false as the next result demonstrates.

Lemma 2.1. Let u,v ∈ Dn and consider the following two statements:

(a) u ≥ [> ] v.

(b) u ≥RO [>RO ] v.

Then, statement (a) implies statement (b), but the converse implication does not hold.

Proof.
(a) =⇒ (b). By definition, we have uh = vh, for all h ∈ {1, 2, . . . , n}. Consider the indices i1
and j1 defined by ui1 = uh, for all h ∈ {1, 2, . . . , n}, and vj1 = vh, for all h ∈ {1, 2, . . . , n}.

Case 1: i1 = j1. Then ũn = ui1 = vi1 = ṽn and uh = vh, for all h ∈ {1, 2, . . . , n} \ {i1}. Let

u1 := (u1, . . . , ui1−1, ui1+1, . . . , un);(2.3a)

v1 := (v1, . . . , vi1−1, vi1+1, . . . , vn);(2.3b)

û1 := (ũn) = (ui1);(2.3c)

v̂1 := (ṽn) = (vi1).(2.3d)

Then, we have u1 ≥ v1 and û1 ≥ v̂1.

Case 2: i1 < j1. We have ui1 = uj1 = vj1 = vi1 , from which we deduce that ũn = ui1 = vj1 =
ṽn and uj1 = vi1 . In addition, uh = vh, for all h ∈ {1, 2, . . . , n} \ {i1, j1}. Denote as v∗ the
permutation of distribution v defined by

(2.4) v∗ := (v1, . . . , vi1−1, vj1 , vi1+1, . . . , vj1−1, vi1 , vj1+1, . . . , vn) .

From what precedes, we deduce that u ≥ v∗. Define next

u1 := (u1, . . . , ui1−1, ui1+1, . . . , uj1 . . . , un);(2.5a)

v1 := (v∗1, . . . , v∗i1−1, v
∗
i1+1, . . . , v

∗
j1 . . . , v

∗
n) = (v1, . . . , vi1−1, vi1+1, . . . , vi1 , . . . , vn);(2.5b)

û1 := (ũn) = (ui1);(2.5c)

v̂1 := (ṽn) = (vj1).(2.5d)

Then, we obtain u1 ≥ v1 and û1 ≥ v̂1.

Case 3: i1 > j1. One can prove using a similar argument to that above that u1 ≥ v1 and
û1 ≥ v̂1.

By applying the above reasoning to the distributions u1 and v1, we construct distributions
u2, v2, û2 := (ũn−1, ũn), and v̂2 := (ṽn−1, ṽn) such that u2 ≥ v2 and û2 ≥ v̂2. By successive
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application of this reasoning, we finally obtain two distributions ûn = ũ and v̂n = ṽ such that
ûn ≥ v̂n, i.e., u ≥RO v. A slight adaptation of the proof above allows one to establish that
u > v implies u >RO v.

¬ [(a) =⇒ (b)]: Choose u := (4, 2, 2) and v := (1, 1, 3), which are not comparable according
to the component-wise ordering, though ũ := (2, 2, 4) > (1, 1, 3) =: ṽ.

The next lemma is well-known (see, e.g., Saposnik (1981)) and it simply states that the
ranking of income distributions by utilitarian unanimity over the class of non-decreasing utility
functions is equivalent to the ranking implied by the rank order criterion. More precisely,
letting

(2.6) Φ := {φ : D → R | φ is non-decreasing},

we have the following result:

Lemma 2.2. Let u,v ∈ Dn. Then, statements (a) and (b) below are equivalent:

(a) ∑n
h=1 φ(uh) =

∑n
h=1 φ(vh), ∀ φ ∈ Φ.

(b) u ≥RO v.

This result mirrors the standard equivalence between first degree stochastic dominance and
utilitarian unanimity (see, e.g., Fishburn and Vickson (1978)).

3. Heterogenous Distributions and Sequential Rank Order Dominance

From now on, we assume that individuals can be distinguished on the basis of two attributes
where the first one can be assimilated with income as above and where the second is a cate-
gorical variable which allows us to partition the population into a finite number of groups of
similar – with respect to that attribute – individuals. A good example of the latter attribute
is health achievement which typically takes a finite number of modalities and defines as many
categories or types of individuals. More generally, any variable that determines a natural
linear order and that can be associated with income constitutes a potential candidate for our
second attribute. We denote by H := {1, 2, . . . , H} the set of categories or types with the
convention that – other things equal – an individual of type h+ 1 is in a better situation than
an individual of type h.

It is then natural to conceive of a bidimensional distribution or situation as a couple (x; a) :=
(x1, . . . , xn; a1, . . . , an) ∈ Dn×H n such that (xi, ai) fully describes individual i, where xi ∈ D

and ai ∈H are respectively the income and the type of individual i. Then, we associate with
(x; a) ∈ Dn ×H n the heterogeneous distribution u := (u1; . . . ; uH), where

(3.1) uh := (uh1 , uh2 , . . . , uhn(h)),

is the income distribution of the subpopulation consisting of all the individuals of type h,
n(h) := #N(h) = 1, and N(h) := {i ∈ {1, 2, . . . , n} | ai = h}, for all h ∈ H . Without loss
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of generality, we assume that incomes within populations of individuals of the same type are
non-decreasingly arranged so that

(3.2) uh1 5 uh2 5 · · · 5 uhn(h).

We indicate by u(h) := (u1; u2; . . . ; uh) the distribution of the incomes received by the indi-
viduals with types equal to h or less and we note that u(H) = u. We let

(3.3) ũ(h) := (ũ(h)
1 , ũ

(h)
2 , . . . , ũ

(h)
ñ(h)−1, ũ

(h)
ñ(h))

stand for the non-decreasing rearrangement of u(h) defined by

(3.4) ũ
(h)
1 5 ũ

(h)
2 5 · · · 5 ũ

(h)
ñ(h)−1 5 ũ

(h)
ñ(h),

where ñ(h) := ∑h
k=1 n(k). Consider two situations (x∗; a∗) and (x◦; a◦) such that a∗ = a◦,

which implies that n∗(h) = n◦(h) = n(h), for all h ∈ H : the number of individuals of type
h in the two situations is the same. Situations (x∗; a∗) and (x◦; a◦) only differ with respect
to the way income is distributed among the types. Denote by u and v the heterogeneous
distributions associated with the situations (x∗; a∗) and (x◦; a◦), respectively.

It will greatly simplify the proofs if individuals, whatever their types, have different incomes
in the situations under comparison. Given u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1)×· · ·×
Dn(H), we define:

H0 :=
{
h ∈H

∣∣∣uhg = vhg , ∀ g ∈ N(h)
}

;(3.5a)

H1 :=
{
h ∈H

∣∣∣uhg 6= vhg , ∃ g ∈ N(h)
}

;(3.5b)

S(h) :=
{
g ∈ N(h)

∣∣∣uhg = vhg
}

for h ∈H1;(3.5c)

T (h) :=
{
g ∈ N(h)

∣∣∣uhg 6= vhg
}

for h ∈H1;(3.5d)

and we note that ∅ ⊆ S(h) ⊂ N(h), ∅ ⊂ T (h) ⊆ N(h), and S(h) ∪ T (h) = N(h), for all
h ∈H1. Consider the following class of H-tuples of utility functions:

(3.6) Ψ∗ := {ψ := (ψ1, . . . , ψH) | ψh(y) is continuous in y, ∀h = 1, 2, . . . , H} ,

where ψh(y) is the utility derived from income y by an individual of type h.1 Given the H-
tuple ψ := (ψ1, . . . , ψH) ∈ Ψ◦ ⊆ Ψ∗, we denote by ψ(H1) := ((ψh)h∈H1) its restriction to H1

and by Ψ◦(H1) the set of such profiles. Then, we have the following obvious result:

Lemma 3.1. Let u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1) × · · · × Dn(H) and Ψ◦ ⊆ Ψ∗.
Then, statements (a) and (b) below are equivalent:

(a) ∑H
h=1

∑n(h)
i=1 ψh(uhi ) =

∑H
h=1

∑n(h)
i=1 ψh(vhi ), for all ψ := (ψ1, . . . , ψH) ∈ Ψ◦.

1 Imposing that the utility functions are continuous is not constraining to the extent that it is always possible
to approximate a discontinuous function by a continuous one as long as the number of points of discontinuity
is finite (see, e.g., Fishburn and Vickson (1978).
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(b) ∑h∈H1

∑
i∈T (h) ψh(uhi ) =

∑
h∈H1

∑
i∈T (h) ψh(vhi ), for all ψ(H1) ∈ Ψ◦(H1).

According to Lemma 3.1, ruling out unconcerned individuals – those whose situations are iden-
tical in the distributions under comparison – does not change the ranking of these distributions
by utilitarian unanimity. Quite interestingly, this result does not require that particular re-
strictions be placed on the H-tuples ψ := (ψ1, . . . , ψH) of utility functions.

In order to compare heterogeneous distributions we make recourse to the sequential rank
order dominance criterion introduced by Atkinson and Bourguignon (1987) for which we give
a formal definition below.

Definition 3.1. Given two heterogeneous distributions u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈
Dn(1)×· · ·×Dn(H), we say that u sequential rank order dominates v, which we write u ≥SRO v,
if and only if:

(3.7) u(h) ≥RO v(h), ∀ h = 1, 2, . . . , H − 1, and u(H) ∼RO v(H).

If in addition u(k) >RO v(k), for some k < H, then we say that u sequential rank order strictly
dominates v, which we write u >SRO v.

Important for subsequent developments is the fact that, if u ≥SRO v, then u is a permutation
of v. Making use of (2.2), (3.4) and (3.7), we note that u ≥SRO v amounts to requiring that

ũ(h)
g = ṽ(h)

g , ∀ g = 1, 2, . . . , ñ(h), ∀h = 1, 2, . . . , H − 1, and(3.8a)

ũ(H)
g = ṽ(H)

g , ∀ g = 1, 2, . . . , ñ(H).(3.8b)

We are next interested in the way utilitarian unanimity has to be adapted in order to
guarantee that the corresponding ranking of heterogeneous distributions coincides with that
implied by sequential rank order dominance. Before we state the result, we need to introduce
the following class of H-tuples of functions:

(3.9) Ψ :=
{
ψ := (ψ1, . . . , ψH) ∈ Ψ∗ | ψ′h(y) = ψ′h+1(y), ∀ y ∈ D , ∀h = 1, 2, . . . , H − 1

}
.

The connection between the class of n-tuples Ψ and the class of submodular functions is easily
recognised if we let g(y, h) := ψh(y), for all y ∈ D and all h ∈ {1, 2, . . . , n}. Indeed, a function
g : D ×D → R is called submodular if

(3.10) g(u+ ∆, v + ξ)− g(u, v + ξ) 5 g(u+ ∆, v)− g(u, v), ∀ (u, v) ∈ D ×D , ∀∆, ξ > 0.

When the function g is differentiable in its first argument, this reduces to the condition that

(3.11) g(1)(y, h) = ψ′h(y) = ψ′h+1(y) = g(1)(y, h+ 1), ∀ y ∈ D , ∀h ∈ {1, 2, . . . , H − 1},

where g(1)(y, h) is the first derivative of g(y, h) with respect to its first argument. Sometimes,
one also says that g is L-subadditive (see, e.g., Marshall and Olkin (1979, Chapter 6, Section
D). Our next lemma constitutes the analogue of Lemma 2.2 when the sequential rank order
criterion is used for ranking heterogeneous distributions.

7
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Lemma 3.2. Let u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1)×· · ·×Dn(H). Then, statements
(a) and (b) below are equivalent:

(a) ∑H
h=1

∑n(h)
i=1 ψh(uhi ) =

∑H
h=1

∑n(h)
i=1 ψh(vhi ), for all ψ := (ψ1, . . . , ψH) ∈ Ψ.

(b) u ≥SRO v.

Proof.
(a) =⇒ (b). Let λ := (λ1, . . . , λH) and consider the H-tuple ψ := (ψ1, . . . , ψH) defined
by ψh(y) := λh φ(y), for all h = 1, 2, . . . , H. Clearly, ψ := (ψ1, . . . , ψH) ∈ Ψ provided
that φ′(y) = 0 and λ1 = λ2 = · · · = λH , which we assume. Choosing successively λ :=
(1, 0, 0, . . . , 0, 0), λ := (1, 1, 0, . . . , 0, 0), . . . ,λ := (1, 1, 1, . . . , 1, 0), λ := (1, 1, 1, . . . , 1, 1), and
λ := (−1,−1,−1, . . . ,−1,−1), condition (a) reduces to

n(1)∑
g=1

φ(u1
g) + · · ·+

n(h)∑
g=1

φ(uhg) =
n(1)∑
g=1

φ(v1
g) + · · ·+

n(h)∑
g=1

φ(vhg ),∀h = 1, 2, . . . , H−1, and(3.12a)

n(1)∑
g=1

φ(u1
g) + · · ·+

n(H)∑
g=1

φ(uHg ) =
n(1)∑
g=1

φ(v1
g) + · · ·+

n(h)∑
g=1

φ(vHg ),(3.12b)

which holds for all functions φ ∈ Φ. Appealing to Lemma 2.2, we conclude that u(h) ≥RO v(h),
for all h = 1, 2, . . . , H − 1, and u(H) ∼RO v(H), hence u ≥SRO v.

(b) =⇒ (a). Given any u := (u1; . . . ; uH) ∈ Dn(1)×· · ·×Dn(H), we have the following equality:
H∑
h=1

n(h)∑
i=1

ψh(uhi ) =
H∑
h=1

[ n(h)∑
i=1

ψh(uhi ) +
h−1∑
k=1

n(k)∑
j=1

ψh(ukj )−
h−1∑
k=1

n(k)∑
j=1

ψh(ukj )
]

=
H−1∑
h=1

[
h∑
k=1

n(k)∑
i=1

(
ψh(uki )− ψh+1(uki )

)]
+

H∑
k=1

n(k)∑
i=1

ψH(uki ).

(3.13)

Letting fh(y) := ψh(y) − ψh+1(y), for h = 1, 2, . . . , H − 1, and fH(y) := ψH(y), and upon
substituting into (3.13), we obtain

(3.14)
H∑
h=1

n(h)∑
i=1

ψh(uhi ) =
H−1∑
h=1

[
h∑
k=1

n(k)∑
i=1

fh(uki )
]

+
H∑
k=1

n(k)∑
i=1

fH(uki ) =
H∑
h=1

ñ(h)∑
i=1

fh(ũ(h)
i ).

Making use of (3.14), condition (a) can be equivalently restated as

(3.15)
H∑
h=1

n(h)∑
i=1

(
ψh(uhi )− ψh(vhi )

)
=

H∑
h=1

ñ(h)∑
i=1

(
fh(ũ(h)

i )− fh(ṽ(h)
i )

)
= 0,

for all fh(y) that are non-decreasing in y. Thanks to Lemma 3.1 we can assume without loss
of generality that there exists no h ∈ H and no i ∈ N(h) such that uhi = vhi . Invoking the
Mean Value Theorem, condition (3.15) is equivalent to

(3.16)
H−1∑
h=1

ñ(h)∑
i=1

f ′h(ξhi )
[
ũ

(h)
i − ṽ

(h)
i

]
+

ñ(H)∑
i=1

f ′H(ξHi )
[
ũ

(H)
i − ṽ(H)

i

]
= 0,

8
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for some ξhi ∈ (ũ(h)
i , ṽ

(h)
i ), for all i ∈ {1, 2, . . . , n(h)− 1, n(h)} and all h ∈H . By assumption

we have f ′h(y) = U ′h(y)− U ′h+1(y) = 0, for all y ∈ D and all h = 1, 2, . . . , H − 1. We therefore
conclude that it is sufficient for (3.16) to hold that u(h) ≥RO v(h), for all h = 1, 2, . . . , H − 1,
and u(H) ∼RO v(H), which is precisely u ≥SRO v.

A direct implication of Lemmas 3.1 and 3.2 is that the individuals who are unconcerned by the
choice between two distributions – they have the same types and incomes in both situations
– play no role in the ranking of these distributions by the sequential rank order criterion:
removing these individuals will not affect the result of the comparisons.

As we have noted above, it follows from the very definition of the sequential rank order
criterion that, if one distribution dominates another, then the dominating distribution is a
permutation of the dominated one. However, not all rearrangements of incomes across indi-
viduals and types have the property that the resulting distributions constitute improvements
over the initial distribution according to the sequential rank order criterion. Among the dif-
ferent possible rearrangements of the elements of a heterogeneous distribution, the following
one will play a decisive role in our main result.

Definition 3.2. Given two heterogeneous distributions u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈
Dn(1) × · · · × Dn(H), we say that u is obtained from v by means of a favourable permutation
if there exist two types h, k ∈ H with h < k and two individuals i, j with i ∈ N(h) and
j ∈ N(k) such that

vhi = ukj < uhi = vkj ;(3.17a)

vht = uht , ∀ t 6= i; vkt = ukt , ∀ t 6= j; and(3.17b)

u(g) = v(g), ∀ g 6= h, k.(3.17c)

According to the definition above, individual j is unambiguously in a better position in the
heterogenous distribution v than individual i since she has a greater income and is also
ranked above by the second attribute. In other words, individual i is more deprived than
individual j in both dimensions. It is fair to note that a favourable permutation is a partic-
ular case of what is known as a correlation increasing transformation in the literature (see,
e.g., Epstein and Tanny (1980) and Tchen (1980)). To make things transparent, let us de-
note by f(y, h) the proportion of individuals who have income y and type h in situation
(x; a) := (x1, . . . , xn; a1, . . . , an). Then, Definition 3.2 amounts to requiring the existence of
two income levels u, v ∈ D and two types h, k ∈H with u < v and h < k such that:

f ∗(u, h) = f ◦(u, h)− 1
n

; f ∗(v, h) = f ◦(v, h) + 1
n

;(3.18a)

f ∗(u, k) = f ◦(u, k) + 1
n

; f ∗(v, k) = f ◦(v, k)− 1
n

; and(3.18b)

f ∗(s, g) = f ◦(s, g), ∀ (s, g) 6= (u, h), (u, k), (v, h), (v, k);(3.18c)

which is nothing other than the definition of a correlation increasing transformation in the
particular case where two individuals swap incomes. A favourable permutation amounts to

9
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compensating for the inequalities arising from the distribution of the two attributes by per-
muting the incomes of the rich and poor – in both attributes – individuals. Interestingly,
the sequential rank order criterion has the property that a favourable permutation is always
considered an improvement, as our next result demonstrates.

Lemma 3.3. Let u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1)×· · ·×Dn(H). Then, u ≥SRO v
whenever u is obtained from v by means of a finite sequence of favourable permutations.

Proof. Suppose that u is obtained from v by means of a single favourable permutation as
defined in (3.18) so that

(3.19) u = ( . . . ; vh1 , . . . , vhi−1, v
k
j , v

h
i+1, . . . , v

h
n(h); . . . ; vk1 , . . . , vkj−1, v

h
i , v

k
j+1, . . . , v

k
n(k); . . . )

and vhi < vkj . Then, we have:

1 5 g 5 h− 1 : u(g) ∼RO v(g) because u(g) = v(g),(3.20a)

h 5 g 5 k − 1 : u(h) >RO v(h) by Lemma 2.1,(3.20b)

k 5 g 5 H : u(g) ∼RO v(g) because u(g) is a permutation of v(g),(3.20c)

and we conclude that u ≥SRO v. When more than one favourable permutation is needed to
convert u into v, the result follows by invoking the transitivity of the sequential rank order
criterion.

According to Lemma 3.3, if a distribution is obtained from another distribution by means
of a sequence of favourable permutations, then the former distribution sequential rank order
dominates the latter. Actually, the implication also goes the other way: if one distribution
is considered better than another the sequential rank order criterion, then it can be derived
from the dominated distribution through an appropriate sequence of favourable permutations.
Hence, our main result:

Theorem 3.1. Let u := (u1; . . . ; uH),v := (v1; . . . ; vH) ∈ Dn(1) × · · · × Dn(H). Then,
statements (a) and (b) below are equivalent:

(a) u is obtained from v by means of a finite sequence of favourable permutations.

(b) u ≥SRO v.

Proof. Given Lemma 3.3 we only have to prove that statement (b) implies statement (a) and
thanks to Lemmas 3.1 and 3.2, we can assume without loss of generality that

(3.21) uhg 6= vhg , ∀ g ∈ N(h), ∀h ∈H .

The method of proof is reminiscent of that designed for identifying the sequence of progressive
transfers that allows one to recover the dominating distribution starting from the dominated
distribution when one distribution is ranked above another by the Lorenz criterion (see, e.g.,
Berge (1963)). In the standard Lorenz case, at each step of the algorithm a progressive

10
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transfer is implemented with the property that in the resulting distribution there is at least
one individual who is given the same income as the one she actually gets in the dominating
distribution. This guarantees that, if there are n individuals with distinct incomes, then it
will take at most n − 1 steps – with one progressive transfer at each step – to obtain the
dominating distribution starting from the dominated one.

The general idea of our algorithm is to construct at each step a new distribution by per-
muting the highest income in the original distribution – that is the distribution resulting from
the preceding step – with another income in such a way that:

(a) This new distribution is ranked below the dominating distribution and above the domi-
nated one by the sequential rank order criterion; and

(b) There is at least one individual who receives in the new distribution the income she actually
gets in the original one.

Unfortunately, while an appropriate choice of the individuals whose incomes are permuted
ensures that the first requirement is met, it will in general take more than just one favourable
permutation to satisfy the second requirement. However, after a finite number of iterations,
where each iteration involves a single favourable permutation, there will be at least one indi-
vidual who will be given the income she gets in the dominating distribution. This income is
then removed – an operation which does not affect the ranking of the distributions – and we
proceed to the next step.

Overview of the proof The algorithm that allows us to construct the dominating distribution
u starting from the dominated distribution v involves T + 1 steps as it is shown in Table 3.1
where:

n[p] is the number of individuals in u[p] and v[p] whose incomes by definition differ;

z[p] follows from v[p] through a finite sequence of favourable permutations;

u[p] ≥SRO z[p] >SRO v[p];

u[p]ipn(ip) = z[p]ipn(ip);

u[p+ 1] is obtained from u[p] by removing income u[p]ipn(ip);

v[p+ 1] is obtained from z[p] by removing income z[p]ipn(ip);

n[p]− 2 5 n[p+ 1] 5 n[p]− 1;

for all p = 1, 2, . . . , T − 1, T . Typically, Step p comprises qp iterations as it is described in
Table 3.2. We refer the reader to Section A where a simple illustration of how the algorithm
works is provided.

Detailed description of Step 1 Since the reasoning is the same for all the steps of the
algorithm, we provide only the details in the case of Step 1. We remove temporarily the index
1 to simplify notation and we therefore use u and v in place of u[1] and v[1], respectively.
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1.A. At the beginning of Step 1, we identify those two individuals who in distributions u and v
receive the maximum available income. We verify that the individual who gets the maximum
income in distribution u has a lower type than the individual who is given the same income
in distribution v. Consider the four following indices:

i := min
{
h ∈H

∣∣∣ ∃ g ∈ N(h) : uhg = up` , ∀ ` ∈ N(p), ∀ p ∈H
}

;(3.22a)

j := min
{
h ∈H

∣∣∣ ∃ g ∈ N(h) : vhg = vp` , ∀ ` ∈ N(p), ∀ p ∈H
}

;(3.22b)

s := min
{
g ∈ N(i)

∣∣∣ uig = ui`, ∀ ` ∈ N(i)
}

;(3.22c)

t := min
{
g ∈ N(j)

∣∣∣ vjg = vj` , ∀ ` ∈ N(j)
}
.(3.22d)

By definition of the indices i, j, s and t, we have

ui1 5 · · · 5 uis−1 < uis = uis+1 = · · · = uin(i);(3.23a)

uhg < uis, ∀ g ∈ N(h), ∀h = 1, 2, . . . , i− 1;(3.23b)

uis = uhg , ∀ g ∈ N(h), ∀h = i+ 1, i+ 2, . . . , H;(3.23c)

vj1 5 · · · 5 vjt−1 < vjt = vjt+1 = · · · = vjn(j);(3.23d)

vhg < vjt , ∀ g ∈ N(h), ∀h = 1, 2, . . . , j − 1;(3.23e)

vjt = vhg , ∀ g ∈ N(h), ∀h = j + 1, i+ 2, . . . , H.(3.23f)

Furthermore, uis := max{uhg} = max{vhg} =: vjt , because u is a permutation of v. We note
that by construction i < j. Indeed, we cannot have i = j, for, if it were the case, then we
would have

(3.24) uin(i) = vin(i),

which is ruled out by (3.21). Suppose next that i > j and consider the distributions u(j) :=
(u1; u2; . . . ; uj) and v(j) := (v1; v2; . . . ; vj). By the definition of vjt , we have

(3.25) ũ
(j)
ñ(j) < uis = vjt = ṽ

(j)
ñ(j).

Hence ¬ [u(j) ≥RO v(j)], which contradicts the fact that u ≥SRO v by assumption. We
therefore have the structure depicted in Table 3.3. Now we operate favourable permutations
within the subpopulation N(i) ∪N(i+ 1) ∪ · · · ∪N(j − 1) ∪N(j) in such a way that, at the
end of this process, one obtains a distribution z[1] such that (i) uin(i) = z[1]in(i) = vjt and (ii)
u ≥SRO z[1] >SRO v.

1.B. We look for the type k ∈ {i, i + 1, . . . , j − 1} such that one of its members r has the
largest income in the distribution (vi; vi+1; . . . ; vj−2; vj−1). Since by definition the income vkr
is smaller than vjt it is possible to perform a favourable permutation involving the individual
r ∈ N(k) and the individual t ∈ N(j). Let

k := min
{
h ∈ {i, . . . , j − 1}

∣∣∣∃ g ∈ N(h) :vhg = vp` ,∀ ` ∈ N(p),∀ p ∈ {i, . . . , j − 1}
}

;(3.26a)

r := min
{
g ∈ N(k)

∣∣∣ vkg = vk` ,∀ ` ∈ N(k)
}
.(3.26b)
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Table 3.3: Selection of the couples (i, s) and (j, t) at the initialisation stage

Type i Type j

· · · 1 · · · s− 1 s s + 1 · · · n(i) · · · 1 · · · t− 1 t t + 1 · · · n(j) · · ·

u : · · · ui
1 · · · ui

s−1 ui
s ui

s+1 · · · ui
n(i) · · · uj

1 · · · uj
t−1 uj

t uj
t+1 · · · uj

n(j) · · ·

v : · · · vi
1 · · · vi

s−1 vi
s vi

s+1 · · · vi
n(i) · · · vj

1 · · · vj
t−1 vj

t vj
t+1 · · · vj

n(j) · · ·

We note that it is possible that k = i and therefore that r ∈ {1, 2, . . . , s− 1}. By definition of
the indices k and r, we have:

vkr 5 · · · 5 vkr−1 5 vkr = vkr+1 = · · · = vkn(k);(3.27a)

vhg < vkr , ∀ g ∈ N(h), ∀h ∈ {i, i+ 1, . . . , k − 1};(3.27b)

vkr = vhg , ∀ g ∈ N(h), ∀h ∈ {k + 1, k + 2, . . . , j − 1};(3.27c)

vkr < vjt .(3.27d)
Consider next the distribution w := (w1; . . . ; wH) obtained from v := (v1; . . . ; vH) by means
of a favourable permutation as is indicated below:

wh = vh, ∀h ∈H (h 6= k, j);(3.28a)

wkg = vkg , ∀ g ∈ N(k) (g 6= n(k));(3.28b)

wkn(k) = vjt ;(3.28c)

wjg = vjg, ∀ g ∈ {1, 2, . . . , p− 1} ∪ {t+ 1, t+ 2, . . . , n(j)};(3.28d)

wjt = vkn(k) = vkr ;(3.28e)

wjg = vjg−1, ∀ g ∈ {p+ 1, p+ 2, . . . , t− 1, t};(3.28f)

where the index p is defined by

(3.29) vj1 5 · · · 5 vjp−1 5 vkr < vjp 5 vjp+1 5 · · · 5 vjt−1 < vjt = vjt+1 = · · · = vjn(j).

The construction of distribution w := (w1; . . . ; wH) is illustrated in Table 3.4. It is important

Table 3.4: Construction of w starting from v by means of a favourable permutation

Type i Type k Type j

· · · 1 · · · s · · · n(i) · · · 1 · · · r · · · n(k) · · · 1 · · · p · · · t · · · n(j) · · ·

u : · · · ui
1 · · · ui

s · · · ui
n(i) · · · uk

1 · · · uk
r · · · uk

n(k) · · · uj
1 · · · uj

p · · · uj
t · · · uj

n(j) · · ·

w : · · · vi
1 · · · vi

s · · · vi
n(i) · · · vk

1 · · · vk
r · · · vj

t · · · vj
1 · · · vk

n(k) · · · vj
t−1 · · · vj

n(j) · · ·

v : · · · vi
1 · · · vi

s · · · vi
n(i) · · · vk

1 · · · vk
r · · · vk

n(k) · · · vj
1 · · · vj

p · · · vj
t · · · vj

n(j) · · ·

to bear in mind the fact that it is individual n(k) of type k who is exchanging her income
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with individual t of type j in order to make sure that the positions of the individuals of
types k and j are not affected. Note also that the incomes of the individuals of type j in
the distribution w have been rearranged in non-decreasing order to fit the definition of a
heterogeneous distribution.

1.C. Since distribution w is obtained from distribution v by means of a favourable permuta-
tion, it follows from Lemma 3.2 that w >SRO v. It remains to be verified that u ≥SRO w and,
to this end, we examine the distributions u(h), w(h) and v(h), for h = 1, 2, . . . , H. We consider
successively four cases.

Case 1: 1 5 h 5 i−1. By assumption u(h) ≥RO v(h) and by construction w(h) = v(h). Hence,
ũ(h)
g = w̃(h)

g = ṽ(h)
g , for all g ∈ N(h).

Case 2: i 5 h 5 j − 1. If k ∈ h+ 1, h+ 2, . . . , j − 1, then the argument is the same as in
Case 1 above. Therefore, we restrict attention to the case in which k ∈ {i, i+ 1, . . . , h− 1, h}.
We indicate by g∗ the highest rank with the income vkr in the ordered distribution ṽ(h), as
shown in

(3.30) ṽ
(h)
1 5 · · · 5 ṽ

(h)
g∗−(n(k)−r)−1 5 ṽ

(h)
g∗−(n(k)−r) = · · · = ṽ

(h)
g∗ ≡ vkn(k) < ṽ

(h)
g∗+1 5 · · · 5 ṽ

(h)
ñ(h),

where we have made use of the fact that by definition vkr = vkg , for all g = r+1, r+2, . . . , n(k).
We indicate by

(3.31) ρ∗ := #
{
g ∈ {1, 2, . . . , ñ(h)− 1, ñ(h)}

∣∣∣ ṽ(h)
g > ṽ

(h)
g∗ = vkr

}
= ñ(h)− g∗

the number of individuals who in the distribution v(h) := (v1; v2; . . . ; vh) have incomes greater
than vkr . Because by definition vkr = vhg , for all g ∈ N(h) and all h ∈ {i, i + 1, . . . , j − 1}, we
note that

(3.32) ñ(h)− ñ(i− 1) 5 g∗ 5 ñ(h),

or equivalently that

(3.33) ρ∗ 5 ñ(h)− (n(i) + n(i+ 1) + · · ·+ n(h)) = ñ(i− 1).

Subcase 2.1: g∗ = ñ(h). Then, it follows from the definition of w̃(h) and the fact that
ũ(h) ≥RO ṽ(h) by assumption that

ũ(h)
g = w̃(h)

g = ṽ(h)
g , ∀ g = 1, 2, . . . , ñ(h)− 1, and(3.34a)

uis = ũ
(h)
ñ(h) = w̃

(h)
ñ(h) = vjt > vkr = vkn(k) ≡ ṽ

(h)
ñ(h).(3.34b)

Subcase 2.2: g∗ ∈ {1, 2, . . . , ñ(h) − 1}. Invoking again the definition of w̃(h) and the fact
that ũ(h) ≥RO ṽ(h) by assumption, we have

ũ(h)
g = w̃(h)

g = ṽ(h)
g , ∀ g = 1, 2, . . . , g∗ − 1, and(3.35a)

uis = ũ
(h)
ñ(h) = w̃

(h)
ñ(h) = vjt > vkr = vkn(k) ≡ ṽ

(h)
ñ(h).(3.35b)
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It remains to be seen what happens when g ∈ {g∗, g∗ + 1, . . . , ñ(h)− 1}.

Starting with the distribution ũ(h) and by definition of the indices i and s, we have

(3.36) ũ
(h)
1 5 · · · 5 ũ

(h)
ñ(h−1)+1 5 · · · 5 ũ

(h)
ñ(h−1)+s−1 < ũ

(h)
ñ(h−1)+s = · · · = ũ

(h)
ñ(h) = uis .

Given a non-empty and finite set A : = {a1, a2, . . . , am}, where ai ∈ R, for all i = 1, 2, . . . ,m
(m = 2), we denote by maxρA the ρth-greatest element in A with 1 5 ρ 5 m. Since by
definition

(3.37) ũ
(h)
ñ(h) = uis > ũ(i−1)

g , ∀ g = 1, 2, . . . , ñ(i− 1)− 1, ñ(i− 1),

we deduce that

(3.38)
{
{ũ(i−1)

g }g=1,2,...,ñ(i−1)
}
⊆
{
{ũ(h)

g }g=1,2,...,ñ(h)−1
}
.

Thus we have:

ũ
(h)
ñ(h)−1 = max

1

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

1

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−0; ρ = 1

ũ
(h)
ñ(h)−2 = max

2

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

2

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−1; ρ = 2

...
...

ũ
(h)
ñ(h)−ρ∗+1 = max

ρ∗−1

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

ρ∗−1

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−ρ∗+2; ρ = ρ∗−1

ũ
(h)
ñ(h)−ρ∗ = max

ρ∗

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

ρ∗

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−ρ∗+1; ρ = ρ∗.

More compactly:

(3.39) ũ
(h)
(ñ(h)−1)−ρ = max

ρ

{
{u(h)

g }g=1,2,...,ñ(h)−1
}
= max

ρ

{
{u(i−1)

g }g=1,2,...,ñ(i−1)
}

= ũ
(i−1)
ñ(i−1)−ρ+1,

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗.

Starting with the distribution ṽ(h) and since by definition ṽ
(h)
g∗ = vkn(k) = vpg , for all

g ∈ N(p) and all p = i, i+ 1, . . . , h, we deduce from (3.31) that

(3.40)
{
{ṽ(h)

g }g=g∗+1,g∗+2,...,ñ(h)
}
⊆
{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}
.

This implies in turn that

ṽ
(h)
ñ(h)−0 = max

1

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

1

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−0; ρ = 1

ṽ
(h)
ñ(h)−1 = max

2

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

2

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−1; ρ = 2

...
...

ṽ
(h)
ñ(h)−ρ∗+2 = max

ρ∗−1

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

ρ∗−1

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−ρ∗+2; ρ = ρ∗−1

ṽ
(h)
ñ(h)−ρ∗+1 = max

ρ∗

{
{ṽ(h)

g }g=g∗+1,...,ñ(h)
}
5 max

ρ∗

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−ρ∗+1; ρ = ρ∗.
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More compactly:

(3.41) ṽ
(h)
ñ(h)−ρ+1 = max

ρ

{
{ṽ(h)

g }g=g∗+1,g∗+2,...,ñ(h)
}
5 max

ρ

{
{ṽ(i−1)

g }g=1,2,...,ñ(i−1)
}

= ṽ
(i−1)
ñ(i−1)−ρ+1,

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗.

Combining (3.39) and (3.41) and making use of the definition of w and of the fact that
u(i−1) ≥RO v(i−1), we obtain

ũ
(h)
ñ(h)−1 = ũ

(i−1)
ñ(i−1)−0 = ṽ

(i−1)
ñ(i−1)−0 = ṽ

(h)
ñ(h)−0 = w̃

(h)
ñ(h)−1 = ṽ

(h)
ñ(h)−1; ρ = 1

ũ
(h)
ñ(h)−2 = ũ

(i−1)
ñ(i−1)−1 = ṽ

(i−1)
ñ(i−1)−1 = ṽ

(h)
ñ(h)−1 = w̃

(h)
ñ(h)−2 = ṽ

(h)
ñ(h)−2; ρ = 2

...
...

ũ
(h)
ñ(h)−ρ∗+1 = ũ

(i−1)
ñ(i−1)−ρ∗+2 = ṽ

(i−1)
ñ(i−1)−ρ∗+2 = ṽ

(h)
ñ(h)−ρ∗+2 = w̃

(h)
ñ(h)−ρ∗+1 = ṽ

(h)
ñ(h)−ρ∗+1; ρ = ρ∗−1

ũ
(h)
ñ(h)−ρ∗ = ũ

(i−1)
ñ(i−1)−ρ∗+1 = ṽ

(i−1)
ñ(i−1)−ρ∗+1 = ṽ

(h)
ñ(h)−ρ∗+1 = w̃

(h)
ñ(h)−ρ∗ = ṽ

(h)
ñ(h)−ρ∗ ; ρ = ρ∗.

More compactly:

(3.42) ũ
(h)
ñ(h)−ρ = ũ

(i−1)
ñ(i−1)−ρ+1 = ṽ

(i−1)
ñ(i−1)−ρ+1 = ṽ

(h)
ñ(h)−ρ+1 = w̃

(h)
ñ(h)−ρ = ṽ

(h)
ñ(h)−ρ,

for all ρ = 1, 2, . . . , ρ∗ − 1, ρ∗, or equivalently

(3.43) ũ(h)
g = ũ

(i−1)
g+1 = ṽ

(i−1)
g+1 = ṽ

(h)
g+1 = w̃(h)

g = ṽ(h)
g ,

for all g = g∗, g∗ + 1, . . . , ñ(h)− 2, ñ(h)− 1. Thus, we conclude that

(3.44) ũ(h)
g = w̃(h)

g = ṽ(h)
g , ∀ g = g∗, g∗ + 1, . . . , ñ(h)− 2, ñ(h)− 1.

Finally, collecting equations (3.34a), (3.34b) on the one hand, and equations (3.35a), (3.35b)
and (3.44) on the other, we obtain ũ(h)

g = w̃(h)
g = ṽ(h)

g , for all h ∈ {i, i+ 1, . . . , j − 1}.

Case 3: j 5 h 5 H − 1. By assumption u(h) ≥RO v(h) and by construction w(h) is a
permutation of v(h). Hence, ũ(h)

g = w̃(h)
g = ṽ(h)

g , for all g ∈ N(h).

Case 4: h = H. By assumption u(H) ∼RO v(H) and by construction w(H) is a permutation of
v(H). Hence, ũ(H)

g = w̃(H)
g = ṽ(H)

g , for all g ∈ N(H).

To summarise, we have u(h) ≥RO w(h) ≥RO v(h), for all h = 1, 2, . . . , H−1, with w(h) >RO v(h),
for at least one h, and u(H) ∼RO w(H) ∼RO v(H), hence u ≥SRO w >SRO v.

To complete the argument In what follows we reintroduce the subscripts and superscripts
in order to identify the step and the iteration we refer to. To this end, we use i1, j1, s1, and
t1 in place of i, j, s, and t, respectively, where the superscript “1” refers to Step 1. Similarly,
we write k1

1 and r1
1 in place of k and r, where the superscript “1” refers to Step 1 and the

subscript “1” to the first iteration of Step 1. Finally, we substitute w[1, 1] for w to make clear
that it is the distribution we have arrived at after the first iteration of Step 1. Given these
conventions, we have u[1] ≥SRO w[1, 1] >SRO v[1] and there are two possibilities.
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Case 1: w[1, 1]i1n(i1) = u[1]i1n(i1), which occurs if k1
1 = i1. Then, we let z[1] = w[1, 1] and we

remove individual n(i1) of type i1 from the distributions u[1] and z[1] to obtain the distribu-
tions u[2] and v[2], respectively, which differ component by component. Invoking Lemma 3.3,
we have:

(3.45) u[1] ∼SRO u[2] ≥SRO v[2] ∼SRO z[1] = w[1, 1] >SRO v[1],

and we proceed to Step 2.

Case 2: w[1, 1]i1n(i1) < u[1]i1n(i1), which occurs if k1
1 > i1. We apply the above reasoning to

the distributions u[1] and w[1, 1] keeping in mind that by definition k1
1 < j1. By so doing,

we select a type k1
2 < k1

1 such that one of its members r1
2 ∈ N(k1

2) has the largest income in
the distribution (w[1, 1]i; w[1, 1]i+1; . . . ; w[1, 1]k1

1−2; w[1, 1]k1
1−1). By permuting the incomes of

individuals r1
2 ∈ N(k1

2) and r1
1 ∈ N(k1

1) in distribution w[1, 1] we construct the distribution
w[1, 2] which has the property that

(3.46) u[1] ≥SRO w[1, 2] >SRO w[1, 1] >SRO v[1].

We face again two possibilities – either k1
2 = i1, or k1

2 > i1 – and we proceed as above.
Repeating this argument, we obtain after a finite number of q1 iterations a distribution w[1, q1]
such that

u[1] ≥SRO w[1, q1] >SRO w[1, q1 − 1] >SRO · · · >SRO w[1, 1] >SRO v[1] and(3.47a)

w[1, q1]i1n(i1) = u[1]i1n(i1).(3.47b)

where q1 5 j1− i1 5 H − 1 (see Table 3.1). We are in the situation described in Case 1 above
and we can proceed to Step 2.

In the worst case where jp = H and ip = 1, it will take (H − 1) iterations at Step p to obtain
a distribution w[p, qp] verifying

u[p] ≥SRO w[p, qp] >SRO w[p, qp − 1] >SRO · · · >SRO w[p, 1] >SRO v[p] and(3.48a)

w[p, qp]k
p
q

n(kp
q ) = ui

p

n(ip).(3.48b)

Since at the end of each step one income at least is removed from the distributions under
comparison, we conclude that it takes at most ñ(H) steps to obtain distribution u from
distribution v by means of favourable permutations, where each step comprises no more than
(H − 1) iterations.

4. Favourable Permutations and Inequality Reduction

Favourable permutations and inequality of well-being No doubt the main reason why the
notion of favourable permutations have met a great success in the economics of multidimen-
sional welfare and inequality measurement is because it is related to the idea of compensation
introduced by Roemer (1996) or Fleurbaey (2008) among others. Typically, the idea is to
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treat the attributes entering the utility function in an asymmetrical way by assuming that one
attribute is used to compensate another (see, e.g., Muller and Trannoy (2012)). A favourable
permutation amounts to compensating for the inequalities arising from the distribution of the
two attributes by permuting the incomes of the rich and poor – in both attributes – individu-
als. Put differently, the permutation of the endowments in the cardinal attribute reduces the
pairwise correlation – or positive association – existing between the two attributes.

An interesting implication of a favourable permutation is that it reduces the ordinal in-
equalities in terms of well-being for a very large class of utility functions. Actually, for any
increasing utility function, the well-being of the poorer individual increases while that of the
richer individual decreases, thereby bringing them closer together on the utility scale. Suppose
that the utility function U(y, h) is increasing in both attributes and that u is obtained from
v by means of a favourable permutation involving two individuals i and j of types h and k,
respectively, with h < k as defined in (3.17). Then, we have

U(vhi , h) < U(uhi , h) < U(ukj , k) < U(vkj , k); or(4.1a)

U(vhi , h) < U(ukj , k) 5 U(uhi , h) < U(vkj , k).(4.1b)

This implication of a favourable permutation is reminiscent of the equity condition of Ham-
mond (1976) and in this respect it may be considered an equalising transformation in an
ordinal context. We insist on the fact that no use is made of submodularity when deriving
the above inequalities which only require that the utility function is increasing in its two
arguments.

While it is interesting, this consequence of a favourable permutation is of limited relevance
from a practical point of view. As shown by Bosmans and Ooghe (2006) and Miyagishima
(2010), the imposition of the equity condition of Hammond (1976) readily precipitates the
maximin criterion, which is generally considered too extreme a principle from an ethical point
of view. However, favourable permutations have more interesting implications for the inequal-
ity of well-being as long as one considers submodular utility functions. Let u and v be the
heterogeneous distributions associated with the situations (x∗; a∗) and (x◦; a◦), respectively,
such that n∗(h) = n◦(h) = n(h) > 1, for all h ∈H . Consider the four following statements:

u is obtained from v by a favourable permutation;A

H∑
h=1

n(h)∑
i=1

ψh(uhi ) =
H∑
h=1

n(h)∑
i=1

ψh(vhi ), ∀ψ := (ψ1, . . . , ψH) ∈ Ψ;B

H∑
h=1

n(h)∑
i=1

φ(f(uhi ) + g(h)) =
H∑
h=1

n(h)∑
i=1

φ(f(vhi ) + g(h)), ∀φ concave;C

f(x∗) + g(a∗) ≥L f(x◦) + g(a◦);D

where the functions f and g are increasing. Invoking Lemma 3.3, Hardy-Littlewood-Pólya
theorem and the fact that the utility function ψ(y, h) = φ(f(y) + g(h)) is submodular as soon
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as φ is concave and f and g increasing, we obtain:

(4.2) A⇐⇒ B =⇒ C ⇐⇒ D

There are a number of issues in normative economics that involve comparisons of situations
resulting from different rearrangements of distributions. In particular, the chain of implications
(4.2) proves to have appealing consequences for comparing the inequalities resulting from
different matching and mobility processes.

Matching and inequality We consider two populations of the same size n – men and women
– where each population is characterised by a distribution of income. We denote by u :=
(u1, . . . , un) and v := (v1, . . . , vn) the distributions of income for men and women, respectively,
and we assume that no two incomes within distributions u and v are the same. The distribution
of women’s incomes is fixed and their incomes are non-decreasingly arranged which implies
that v1 < v2 < · · · < vn.2 We are interested in pairing men and women in such a way that
aggregate income inequality is minimised. In order to compare distributions on the basis of
inequality, we follow the standard practice and appeal to the standard Lorenz criterion. Given
two distributions x := (x1, . . . , xn) and y := (y1, . . . , yn) such that ∑n

i=1 xi = ∑n
i=1 yi, we say

that x Lorenz dominates y, which we write x ≥L y, if and only if:

(4.3)
k∑
j=1

x̃j =
k∑
j=1

ỹj, ∀ k = 1, 2, . . . , n− 1.

Let u∗ := (u∗1, . . . , u∗n) and u◦ := (u◦1, . . . , u◦n) be two permutations of u := (u1, . . . , un). Denote
by u∗ + v := (u∗1 + v1, . . . , u

∗
n + vn) and u◦ + v := (u◦1 + v1, . . . , u

◦
n + vn) the distributions of

aggregate income corresponding to the matchings (u∗; v) and (u◦; v), respectively. We deduce
immediately from (4.2) that, if u∗ is obtained from u◦ by means of a favourable permutation,
then:

(4.4) (u∗ + v) >L (u◦ + v),

where >L is the asymmetric component of ≥L. Consider a matching where a rich woman is
married with a rich man and a poorer woman with a poor man: a switch of men between
these two women will result in an unambiguous reduction of inequality in the distribution of
the spouses’ total income. In particular, the most effective way to reduce income inequality
among couples would be to match the richest woman with the poorest man, the second richest
woman with the second poorest man, and so on. This provides a theoretical rationale to the
conclusion of several studies suggesting that the increasing correlation of spouses’ earnings
across couple households contributes significantly to widening inequality (see, e.g., Cancian
and Reed (1999), Schwartz (2010), Hyslop (2001)).

2 These assumptions are made for simplicity and the result would not be modified if we dispensed with these
restrictions but the notation would be much heavier.
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Exchange mobility We consider a society composed of n dynasties (n = 2), where each
dynasty consists of one father and one son. A situation for the society is a n× 2 matrix

(4.5) x ≡ (xF ; xS) :=



xF1 xS1
...

...

xFh xSh
...

...

xFn xSn


=



x1
...

xh
...

xn


,

such that xh = (xFh , xSh) is the intergenerational distribution of income of dynasty h, where
xFh ∈ S and xSh ∈ S are respectively the incomes of dynasty h’s father and son, and where
S := {s1, s2, . . . , sm} ⊂ D is the set of all possible incomes with s1 < s2 < · · · < sm.
To simplify things, we let m = n and xFh = sh, for all h = 1, 2, . . . , n, which implies that
xF1 < xF2 < · · · < xFn . We also assume that the incomes of children are permutations of
parents’ incomes which implies that no two children can have the same income. Given the
conventions above, two situations x ≡ (xF ; xS) and y ≡ (yF ; yS) can only differ to the extent
that xS and yS are permutations of each other.3 Following Atkinson (1981), we say that x
exhibits more mobility than y if and only if

(4.6)
n∑
h=1

V (xFh , xSh) =
n∑
h=1

V (yFh , ySh ), ∀ V ∈ V ,

where V := {V : D×D → R | V12(u, v) 5 0, ∀ (u, v) ∈ D×D} is the set of admissible dynasty
utility functions. It follows from Lemma 3.2 that, if there is greater mobility in x than in y,
then xS ≥SRO yS, and conversely. Appealing next to Theorem 3.1, this is equivalent to saying
that xS is obtained from yS by means of a finite sequence of favourable permutations.

The connection between inequality and mobility has been pointed out by Shorrocks (1980,
Section 4) who suggested that, the more mobile the society is, the more equally distributed
are the dynasties’ aggregate incomes. Indeed, consider the class of dynasty utility functions
V (u, v) := φ(f(u) + g(v)), where f(u) + g(v) can be interpreted as the net present value of
the dynasty’s intergenerational income distribution and where φ measures the value attached
to it. Assume in addition that f and g are increasing and that φ is concave. Then, letting
f(zF ) := (f(zF1 ), . . . , f(zFn )) and g(zS) := (g(zS1 ), . . . , g(zSn )), for z ∈ {x,y}, we deduce from
(4.2) that, if condition (4.6) holds, then

(4.7) (f(xF ) + g(xS)) ≥L (f(yF ) + g(yS)).

Therefore, whatever the way we compute the net present values of the intergenerational income
distributions – provided that fathers’ and sons’ incomes contribute positively to it and that
their distributions of income are permutations of each other – inequality decreases as mobility
increases.4

3 Here again we insist on the fact that these assumptions are made for convenience and that they can – to
some extent – be relaxed without affecting the results.

4 A reader, who has some reluctance to accept the assumption that the fathers’ and sons’ income distributions
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5. Concluding Remarks

Considering the case where there are two attributes and where the distribution of one of
these two attributes is fixed, we have shown that sequential rank order domination of one
distribution over another implies that the dominating distribution can be obtained from the
dominated one by means of a finite sequence of favourable permutations, and conversely.
In a way, the application of the sequential rank order criterion permits one to detect when
favourable permutations – and only such operations – are involved in the transformation of
distributions. It has been argued that a favourable permutation results in a smoothing of the
distribution of the utilities the individuals derive from their endowments in the two attributes.
We have provided two examples that involve more or less explicitly favourable permutations
and where the application of the sequential rank order criterion proves to be relevant.

As a close inspection of the proof of our main result makes clear, it is not necessary that our
first attribute which we have assimilated with income for convenience is of a cardinal nature
and our analysis applies equally to distributions of two ordinal attributes. This stems from
the fact that the transformations – the favourable permutations – we consider in the paper do
not involve transfers of the compensating attribute between individuals. Similarly, the choice
of the asymmetrical treatment of the two attributes – income and a categorical variable like
health achievement for instance – made in the paper is arbitrary and it can be reversed. This
would not affect our main result which builds exclusively on the ordinal properties of our two
attributes.

We have implicitly restricted our attention to comparisons of situations where the distri-
butions of the first attribute are permutations of each other and hence have equal means. In
other words, we implicitly have assumed that the marginal distributions of the two attributes
are fixed as in Tchen (1980) and Epstein and Tanny (1980). While this permits one to stick
with a particular way of thinking of inequality – the smoothing impact of favourable permu-
tations mentioned above – we must admit that the applicability of the sequential rank order
criterion as defined here to real world comparisons is limited. A natural way of extending our
approach would be to relax the assumption according to which the distributions of income
have equal means. This raises technical difficulties – one has to find a means of separating
favourable permutations from income increments – that are beyond the scope of this paper
and it is left for future research. Similarly, one might be tempted to discard the assumption
that the distribution of the categorical variable is fixed. But in this case the sequential rank
order criterion will have to be abandoned and replaced by the standard first degree stochastic
dominance criterion introduced by Atkinson and Bourguignon (1982) in the inequality and
welfare literature.

Finally, it must be stressed that the combination of favourable permutations with pro-
gressive transfers in an appropriate way allows one to go beyond first degree stochastic –

are permutations of each other, might feel more comfortable if income is replaced by some (ordinal) measure
of status as it is typically done by sociologists. Inspection of the argument confirms that this will not change
the result.
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equivalently, rank order – dominance. Gravel and Moyes (2012) have shown that the equal-
ising operations that lie behind utilitarian unanimity over the class of concave in income and
submodular utility functions can always be decomposed into a favourable permutation fol-
lowed by a progressive transfer. This confirms that a favourable permutation is a primitive
notion that can be regarded as the counterpart of a progressive transfer in a bidimensional
setting.

A. Illustration of the Algorithm Used in the Proof of Theorem 3.1

Consider the two following heterogeneous distributions:

v = (v1; v2; v3) = (1, 3; 2, 4, 6, 7; 5, 8, 9);

u = (v1; v2; v3) = (6, 7; 4, 5, 8, 9; 1, 2, 3).

We have

ũ(1) ≡ (6, 7) > (1, 3) ≡ ṽ(1);

ũ(2) ≡ (4, 5, 6, 7, 8, 9) > (1, 2, 3, 4, 6, 7) ≡ ṽ(2);

ũ(3) ≡ (1, 2, 3, 4, 5, 6, 7, 8, 9) = (1, 2, 3, 4, 5, 6, 7, 8, 9) ≡ ṽ(3).

Thus u >SRO v.

Step 1

h = 1 h = 2 h = 3
1 2 1 2 3 4 1 2 3

u[1]h : 6 7 4 5 8 9 1 2 3 i1 = 2; s1 = 4; j1 = 3; t1 = 3
w[1, 1]h : 1 3 2 4 6 9 5 7 8
v[1]h : 1 3 2 4 6 7 5 8 9 k1

1 = 2; r1
1 = 4

We check that:

ũ[1](h) w̃[1, 1](h) ṽ[1](h)

h = 1 (6, 7) > (1, 3) = (1, 3)
h = 2 (4, 5, 6, 7, 8, 9) > (1, 2, 3, 4, 6, 9) > (1, 2, 3, 4, 6, 7)
h = 3 (1, 2, 3, 4, 5, 6, 7, 8, 9) = (1, 2, 3, 4, 5, 6, 7, 8, 9) = (1, 2, 3, 4, 5, 6, 7, 8, 9)

We have

u[1]24 = z[1]24;

u[1] >SRO z[1] = w[1, 1] >SRO v[1];

u[2] := u[1] \ {u[1]24}; v[2] := z[1] \ {z[1]24};

u[2] = (6, 7; 4, 5, 8; 1, 2, 3) 6= (1, 3; 2, 4, 6; 5, 7, 8) = v[2];

and we proceed to Step 2.
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Step 2

h = 1 h = 2 h = 3
1 2 1 2 3 1 2 3

u[2]h : 6 7 4 5 8 1 2 3 i2 = 2; s2 = 3; j2 = 3; t2 = 3
w[2, 1]h : 1 3 2 4 8 5 6 7
v[2]h : 1 3 2 4 6 5 7 8 k2

1 = 2; r2
1 = 3

We check that:

ũ[2](h) w̃[2, 1](h) ṽ[2](h)

h = 1 (6, 7) > (1, 3) = (1, 3)
h = 2 (4, 5, 6, 7, 8) > (1, 2, 3, 4, 8) > (1, 2, 3, 4, 6)
h = 3 (1, 2, 3, 4, 5, 6, 7, 8) = (1, 2, 3, 4, 5, 6, 7, 8) = (1, 2, 3, 4, 5, 6, 7, 8)

We have

u[2]23 = z[2]23;

u[2] >SRO z[2] = w[2, 1] >SRO v[2];

u[3] := u[2] \ {u[2]23}; v[3] := z[2] \ {z[2]23};

u[3] = (6, 7; 4, 5; 1, 2, 3) 6= (1, 3; 2, 4; 5, 6, 7) = v[3];

and we proceed to Step 3.

Step 3

h = 1 h = 2 h = 3
1 2 1 2 1 2 3

u[3]h : 6 7 4 5 1 2 3 i3 = 1; s3 = 2; j3 = 3; t3 = 3
w[3, 2]h : 1 7 2 3 4 5 6
w[3, 1]h : 1 3 2 7 4 5 6 k3

2 = 1; r3
2 = 2

v[3]h : 1 3 2 4 5 6 7 k3
1 = 2; r3

1 = 2

We check that:

ũ[3](h) w̃[3, 2](h) w̃[3, 1](h) ṽ[3](h)

h = 1 (6, 7) > (1, 7) > (1, 3) = (1, 3)
h = 2 (4, 5, 6, 7) > (1, 2, 3, 7) = (1, 2, 3, 7) > (1, 2, 3, 4)
h = 3 (1, 2, 3, 4, 5, 6, 7) = (1, 2, 3, 4, 5, 6, 7) = (1, 2, 3, 4, 5, 6, 7) = (1, 2, 3, 4, 5, 6, 7)

We have

u[3]12 = z[3]12;

u[3] >SRO z[3] = w[3, 2] >SRO w[3, 1] >SRO v[3];

u[4] := u[3] \ {u[3]12}; v[4] := z[3] \ {z[3]12};

u[4] = (6; 4, 5; 1, 2, 3) 6= (1; 2, 3; 4, 5, 6) = v[4];

and we proceed to Step 4.
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Step 4

h = 1 h = 2 h = 3
1 1 2 1 2 3

u[4]h : 6 4 5 1 2 3 i4 = 1; s4 = 1; j4 = 3; t4 = 3
w[4, 2]h : 6 1 2 3 4 5
w[4, 1]h : 1 2 6 3 4 5 k4

2 = 1; r4
2 = 1

v[4]h : 1 2 3 4 5 6 k4
1 = 2; r4

1 = 2

We check that:

ũ[4](h) w̃[4, 2](h) w̃[4, 1](h) ṽ[4](h)

h = 1 (6) = (6) > (1) = (1)
h = 2 (4, 5, 6) > (1, 2, 6) = (1, 2, 6) > (1, 2, 6)
h = 3 (1, 2, 3, 4, 5, 6) = (1, 2, 3, 4, 5, 6) = (1, 2, 3, 4, 5, 6) = (1, 2, 3, 4, 5, 6)

We have

u[4]11 = z[4]11;

u[4] >SRO z[4] = w[4, 2] >SRO w[3, 1] >SRO v[4];

u[5] := u[4] \ {u[4]11}; v[5] := z[4] \ {z[4]11};

u[5] = (4, 5; 1, 2, 3) 6= (1, 2; 3, 4, 5) = v[5];

and we proceed to Step 5.

Step 5

h = 2 h = 3
1 2 1 2 3

u[5]h : 4 5 1 2 3 i5 = 2; s5 = 2; j5 = 3; t5 = 3
w[5, 1]h : 1 5 2 3 4
v[5]h : 1 2 3 4 5 k5

1 = 2; r5
1 = 2

We check that:

ũ[5](h) w̃[5, 1](h) ṽ[5](h)

h = 2 (4, 5) > (1, 5) > (1, 2)
h = 3 (1, 2, 3, 4, 5) = (1, 2, 3, 4, 5) = (1, 2, 3, 4, 5)

We have

u[5]22 = z[5]22;

u[5] >SRO z[5] = w[5, 1] >SRO v[5];

u[6] := u[5] \ {u[5]22}; v[6] := z[5] \ {z[5]22};

u[6] = (4; 1, 2, 3) 6= (1; 2, 3, 4) = v[6];

and we proceed to Step 6.
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Step 6

h = 2 h = 3
1 1 2 3

u[6]h : 4 1 2 3 i6 = 2; s6 = 1; j6 = 3; t3 = 3
w[6, 1]h : 4 1 2 3
v[6]h : 1 2 3 4 k6

1 = 2; r6
1 = 1

We check that:

ũ[6](h) w̃[6, 1](h) ṽ[6](h)

h = 2 (4) = (4) > (1)
h = 3 (1, 2, 3, 4) = (1, 2, 3, 4) = (1, 2, 3, 4)

We have

u[6]21 = z[6]21;

u[6] = z[6] = w[6, 1] >SRO v[6];

u[7] := u[6] \ {u[6]21}; v[7] := z[6] \ {z[6]21};

u[7] = (4; 1, 2, 3) = (4; 1, 2, 3) = v[7];

and we are home.
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