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Résumé 

Dans la plupart des études empiriques et théoriques qui cherchent à comprendre les 

comportements individuels conduisant à la formation de réseaux sociaux, il est avancé que si 

les réseaux réels sont clusterisés c’est parce que les individus valorisent la fermeture 

(« closure ») triadique de leurs relations (ils aiment que leurs amis soient amis entre eux). 

Dans ce papier, nous soutenons que le clustering peut aussi s’observer en dépit du fait que 

les individus n’aiment pas la redondance de leurs connexions. Nous proposons un modèle 

théorique de formation de nouvelles collaborations de recherche que nous estimons sur 

l’évolution longitudinale du réseau français de co-invention de brevets. Nous montrons que si 

ce réseau social est clusterisé, c'est parce qu’il est corrélé avec des métriques exogènes 

affectant les coûts de formation des liens directs, et non parce que les agents préfèrent, en 

soi, fermer des triangles. Ce résultat est obtenu grâce à la richesse de nos données qui nous 

permettent de contrôler pour les effets fixes des dyades ainsi que pour les divers coûts de 

formation des relations (la distance géographique, la spécialisation technologique, les 

frontières institutionnelles et leurs caractéristiques), omis dans les études précédentes. 

Mots-clés : Formation stratégique des réseaux; Collaborations inter-individuelles; Closure; 

Clustering; Brevets. 

Unintended triadic closure in social networks: The strategic formation of research 
collaborations between French inventors 

Abstract 

Most of the empirical and theoretical literature aimed at understanding the behavioral 

patterns that lead to the formation of social networks argue that such networks are 

clustered because agents like social closure, since it facilitates cooperation enforcement, for 

instance, or increases match quality. We argue that, in certain circumstances, network 

clustering may arise for other reasons, even though agents may actually not like redundancy 

in connections. We propose a theoretical model of the formation of new research 

collaboration that we estimate on the longitudinal evolution of the French co-invention 

network. We show that if this type of social network is closed it is because it correlates with 

exogenous metrics affecting the costs of direct link formation, not because agents prefer to 

close triangles per se. This result is obtained thanks to the richness of our dataset, allowing 

us to control for dyadic fixed-effects and various costs of network formation (geographical 

distance, technological specialization, and institution boundaries and attributes) omitted in 

previous studies. 

Keywords: Strategic network formation; Inter-individual collaborations; Closure; Clustering; 

Patents. 
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1 Introduction

In the quest shared by several scientific disciplines to understand how social and economic

networks are formed, we have benefited from numerous empirical results characterizing

their structural properties. We now know that large real networks, though complex

and heterogeneous in many respects, do nonetheless share certain common structural

features. Perhaps the most salient feature of most real social networks is that they

are highly clustered, in the sense that the neighborhoods of neighbors tend to overlap,

forming triangles. The frequency with which agents’ neighbors are themselves neighbors

is, on average, several thousand times higher than in similar (size and density) randomly

built networks. This property has been observed in a variety of network contexts such

as those involving Hollywood actors (Watts, 1999), corporate board members (Davis et

al., 2003), Broadway musicians (Uzzi and Spiro, 2005), inventors (Fleming et al., 2007),

scientists (Newman, 2001) or alliances between firms (Kogut and Walker, 2001; Baum

et al., 2003). The literature thus clearly converges to acknowledge that social networks

exhibit what Rapoport (1953) and Granovetter (1973) first called “triadic closure”.

This strong tendency of individuals to cluster in networks initially puzzled researchers

seeking to understand the factors affecting the formation of connections. One direct and

natural explanation of the social bias for triangles is what we call the “love for triadic

closure” hypothesis. This takes different forms in the literature. Following on from

Simmel who, in the early twentieth century, was the first to systematically describe the

sophisticated games at play between three persons, Heider (1958) and Newcomb (1961)

explored the psychological motives of individuals to maintain a “cognitive balance” be-

tween their social relations. They argued that agents dislike it when their neighbors

are not also friends, because this creates tensions and instability. Recently, Bearman

and Moody (2004) have shown that network intransitivity (the proportion of two-step

relations that are not closed) is associated with a higher rate of suicide among female

teenagers. Taking this argument one step further, agents may be directly interested in

their neighbors also being friends and, thus, may intentionally favor such connections.

Along these lines, Karlan et al. (2009) argue that common neighbors can act as so-

cial collaterals in bilateral inter-individual lending agreements. For Fafchamps et al.

(2010), agents play the role of referees between their neighbors, so that information on

the quality of potential bilateral matches flows through existing connections. Though

the authors do not explicitly model intermediaries’ strategic behaviors, they do interpret

the negative effect of social distance on the probability of two economists collaborating

(writing a paper together) due to their common neighbors having served as referrals.
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Rather than focusing on the role played by common neighbors in arranging for their

friends to meet and then set up connections, several authors highlight the beneficial

influence of a common third-party on the decision by agents to form a link. Granovetter

(1973) suggests that two agents who independently spend time with a third one have a

greater chance of meeting and, thus, of becoming linked. Coleman (1988) emphasizes

that closure, by facilitating collective monitoring and sanctions, thereby prevents free-

riding and enforces cooperative behavior. Recently, several authors (e.g. Raub and

Weesie, 1990; Ali and Miller, 2012) have used repeated games theory to model this

idea: assuming that information on bad behavior flows through network connections,

overlapping neighborhoods speed its diffusion in the community (between the recipients

of misbehavior and potential punishers) and therefore shorten the waiting time before

punishment. Granovetter (1985) also argues that closure facilitates interpersonal trust,

since it creates a reputation cost for individuals who misbehave. Buskens (2003) builds

on this idea to develop a model with incomplete information about the utility an agent

derives from abusing the trust of two trustees. In a situation of network embeddedness,

in which two trustees can learn from each other’s experience with the agent, s/he has

greater incentives to build a reputation for honoring others’ trust. Jackson et al. (2012)

adopt a slightly different perspective. They show that, in a complete information setting,

local cliques are sustained in the equilibrium not just because they induce cooperation,

but especially because they minimize the social contagion of punishment.1

All these arguments highlight the advantages of triadic closure. An important line

of research in sociology, however, claims that individuals benefit from non-redundant

information obtained from different clusters, provided they are able to build “bridges”

between those disconnected communities. According to this approach, closure produces

informational homogeneity and redundancy or, even, isolation, since individuals share

the same sources of information. These ideas, which were developed in the early work

of Granovetter (1973), hark back to another original idea advanced by Simmel (1922).

He argues that a third person,“the Tertius Gaudens”, gains from acting as an interme-

diary between two disconnected persons. In Burt’s theory of “structural holes” (1992),

gaps in networks provide opportunities for (entrepreneurial) individuals to bridge sepa-

rate clusters and, thus, to play such an intermediary role. Thanks to bridges between

separate communities, those individuals can synthesize, select and broker the flow of in-

formation or ideas arising from disconnected parts of the network, and can even control

projects from opposite sides of the hole (Burt, 2000). Recent empirical studies show

1Though the authors highlight the notion of “support” rather than clustering, the equilibrium net-

works still exhibit a high level of clustering.
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that brokers have higher performances, for instance, in tracking job opportunities (Gra-

novetter, 1974), generating good ideas (Burt, 2004), obtaining promotions (Burt, 1997),

or enhancing firms’ inventiveness (Ahuja, 2000; Baum et al., 2000).2

The opposition between those who highlight the advantages of bridging connections,

and those who might favor the “love for triadic closure” hypothesis, has challenged those

researchers attempting to develop a synthetic explanation of link formation. One way

of reconciling these views is to introduce heterogeneity between agents, assuming that

intrinsic abilities, personality traits, or specific incentives of agents could eventually lead

them to specialize in one type of neighborhood. Burt (2000) noted, for instance, that

agents are not equally well-off as brokers between communities. Most people (more

risk adverse agents, in particular) would favor closure in their relations, whereas certain

entrepreneurial-minded individuals would build bridges between disconnected clusters.

Burt (2000) also suggests that agents can sustain intrinsically different types of link.

They can, therefore, eventually specialize in building just one type.

An alternative, and somewhat less ad-hoc point of departure, is to be found in the

observation that it is not necessary to assume any “love for triadic closure” ingredient,

or specific individual abilities or link attributes when modeling link formation, in order

to obtain clustered equilibrium networks. Let us consider, for instance, the well-known

connections model introduced by Jackson and Wolinsky (1996). In this model, agents

benefit from positive externalities from other agents with whom they are indirectly con-

nected, and the strength of the externality decays with social distance. As a consequence,

a specific feature of the model is that agents do not benefit from multiple paths to some

other agent: only the length of one of the shortest paths matters. There is a replacement

effect. In particular, when two agents already have at least one common friend, they have

fewer incentives to form a link with each other, ceteris paribus, because, thanks to this

common neighbor, they already benefit from each other. Does this trait disqualify the

model from explaining the formation of the particular kind of social network which does

exhibit triadic closure? Carayol and Roux (2009) have shown that this is not the case in

a simple extension of the connections model. In fact, introducing an exogenous structure

that affects the direct link costs is a sufficient condition to ensure that agents form triadic

connections in all pairwise stable networks for non-extreme values of the strength of the

externalities. Agents do so simply because, though the gross returns of these connections

are limited, their costs are also very small. Many triangles can therefore be observed in

real social networks, even though agents do not like closing them. Interestingly, in the

2For a survey, see Burt (2000).
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long run, some agents do strategically sustain long-distance (very costly) connections.

There are only a few such social bridges because, once long-distance connections are

formed, the neighbors’ incentives to form similar long-distance connections disappear.

Neighbors free-ride on these connections to gain access to distant agents. Therefore,

the strategically formed long-run equilibrium networks are closed locally, though a few

bridges between separate communities are formed, thereby constituting small worlds,

in the sense of Watts and Strogatz (1998). Since, in that model, all agents are ex ante

identical, and are not even allowed to broker knowledge, this result provides a simple and

neat explanation of the puzzle, going against the “love for triadic closure” hypothesis.

The main goal of the present paper is to develop a strategic model of network for-

mation compatible with both hypotheses, and to estimate that model, using large real

network data so as to obtain empirical validation or rejection of the “love for triadic

closure” hypothesis. Admittedly, the results are limited to the context of our empiri-

cal application: the formation of research collaborations between inventors. However,

knowledge networks are good candidates for challenging the “love for triadic closure”

hypothesis. On the one hand, Zander and Kogut (1995) argue that knowledge transfer

and the speed of its diffusion are facilitated by closure, in particular when that knowl-

edge is highly tacit or complex. Reagans and McEvily (2003) note that closure favors

individuals’ willingness to make efforts to share knowledge. On the other hand, social

bridges have been associated with greater ability to generate knowledge (Burt, 1992,

2004; Ahuja, 2000; Baum et al., 2000).

We introduce a simple theoretical model in which agents (individual researchers),

at any point in time, may consider the formation of a bilateral collaboration that will

produce an expected direct return and generate various costs. If this research collabora-

tion is undertaken, a new social tie is formed within the larger social network generated

by preexisting collaborations. These connections are conducive to positive externalities.

Though the model has been voluntarily kept as simple as possible, it is sufficiently gen-

eral to encompass opposing assumptions about triadic closure: either multiple paths to

some agent are complementary and agents typically like forming triangles, or multiple

paths are partial or perfect substitutes, which implies that agents do not care about

forming triangles, or even dislike doing so. This model leads to a simple expression of

the incentive schemes for forming collaborations at any point in time, either in or out of

equilibrium, which we estimate by using co-invention data.

Our empirical evidence is based on the relational information contained in all Euro-

pean patent applications over the period 1978-2004, for which at least one inventor has
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declared a personal address in France. For each year concerned, we build the co-invention

network by allocating a connection between two individuals if they have both previously

appeared among the inventors of the same patent application. From a methodological

point of view, the procedure is similar to that performed for measuring scientific collabo-

ration networks from data on the co-authorship of scientific publications (Newman, 2001,

Barabasi et al. 2002). Individual information, such as inventors’ geographic location,

is available. We also build various covariates accounting for the costs of link formation.

Some of these covariates rely upon the identification of patent applicants. These are

subsequently matched against the list of companies, whose mandatory annual survey

provides us with detailed information on applicants, including their R&D investments

and research personnel.

If we now turn to the estimation of our theoretical model, the above discussion of the

“love for triadic closure” hypothesis highlights the need for the proper consideration of

the link formation costs when estimating models of network formation. Should such costs

not be accounted for, the omitted variables (the unobserved costs) that affect the decision

to form links would be correlated with closure. Such regressions are likely to provide

spurious estimates of having friends in common, leading to the mistaken conclusion that

agents have incentives to form triadic connections. Typically, if one intends to estimate

the impact of having a common friend on the probability to form a link, but ignores some

(potentially time-varying) costs, such as geographical distance, institutional barriers or

common interests, one may find positive and significant estimates of closure whereas, in

fact, it plays absolutely no role. This is likely to occur if, in the true data generation

process, the costs affect in the same way both the probability of connecting and the

probability of having common friends.

Our main result is that, when the connection costs are not properly accounted for,

the estimations lead to the conclusion that agents like closing triangles, whereas when we

account for the costs, we find that agents do not like closing triangles. We also observe

that, according to certain specifications, they even dislike triadic closure. This result

thus speaks against the “love for closure hypothesis”.

This paper is also related to the literature on knowledge spillovers and invention.

Abundant empirical evidence highlights the role of knowledge spillovers, which are proven

to be spatially and technologically bounded (Jaffe, 1986), as important determinants of

inventiveness and productivity growth (e.g. Griliches 1992). Several recent studies have

also shown that interpersonal networks are crucial determinants of their transmission

(Singh, 2005; Breschi and Lissoni, 2006). Nevertheless, we still have little research on
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the formation of knowledge networks since, in most studies, network ties are taken as

exogenous. Here, we consider individuals’ decisions to form new bonds in order to take

advantage of the resulting network. A better understanding of such individual strategies

should help to provide stronger foundations for policies aimed at supporting innovation.

The following section introduces our simple theoretical model of strategic research

collaboration formation, and our empirical strategy. The third section presents the data.

The fourth section exposes our findings and discusses their robustness. The last section

concludes.

2 The strategic formation of inter-individual research col-

laboration networks

In this section, we present the different building blocks of the theoretical model and

discuss our empirical strategy.

2.1 The game

At each period t of the discrete time, we consider a finite set of nt agents, N t ={
1, 2, ..., nt

}
. New agents may enter the population at the beginning of any period

and, for the sake of simplicity in the exposure, agents are assumed never to retire or

die,3 so that N t ∈ N t+1. A (non-directed) link between two distinct agents i and j ∈ N t

is denoted ij. Let gt denote the relational network in place at the beginning of period

t, that is the collection of all existing links at that point in time. We also assume that

agents never consider link deletion, so that gt ∈ gt+1. At the beginning of each period, all

pairs of unconnected agents simultaneously meet with some given uniform small proba-

bility p. They may then decide to establish research collaboration or not on the basis of

the perceived impact of the new link on the discounted net present value of their payoffs.

Agents can bargain bilaterally when they consider forming a link together, so that a link

will be formed between two agents who meet, if their expected joint payoffs are greater

when the project is launched. We do not consider the precise way in which agents bar-

gain, but just assume that the bilateral transfers are such that the link is always formed

when the two agents find it jointly profitable to do so. Finally, agents are myopic, in

the sense that they do not anticipate the impact of their present moves on subsequent

moves: they consider that the network formed in the present period is a permanent one.

This standard assumption is usually considered as relevant when one considers large

3This assumption could be easily relaxed without changing any of the predictions.

6



networks in which forward looking computations become extremely complex (Jackson,

2009).

2.2 Individual payoffs

A research project generates immediate (pair specific) net payoffs, and brings a social

connection into the web of already existing connections, which also generates per period

returns.

The expected (net) returns for i of a shared research project with j formed at period

t is given simply by:

rt(i, j) = θij + εtij − ζctij , (1)

where the gross returns of the research collaboration are composed of θij , an idiosyn-

cratic, pair-specific and time-invariant parameter, and of εtij , its time-variant counter-

part, interpreted as the opportunities of research collaboration between i and j that

particular year. The variable ctij captures all the (sunk) costs, supported by i, for run-

ning the research collaboration with j at period t. ζ is a non-null and positive parameter.

To simplify the exposure of the model, though that is not necessary for our results, we

will further assume that θij = θji, ε
t
ij = εtji and ctij = ctji so that rt(i, j) = rt(j, i),

namely the net primary payoffs of a research collaboration, are identical for the two

agents involved.

Research collaboration between two agents who are not already connected consists in

a bilateral social connection that is assumed to be permanent. The complex of bilateral

social connections is also assumed to be the support of positive externalities at each

period. We propose the following simple specification of these “network” per period

payoffs:

πi
(
gt
)

=
∑
j 6=i

(
αηij

(
gt
)

+ βη2
ij

(
gt
)

+ γ
4
η ij
(
gt
))

, (2)

with ηij
(
gt
)

the number of direct links between i and j on gt (equal to 0 or 1), η2
ij

(
gt
)

the number of paths of length two between i and j on gt, provided there is no direct link,

between i and j, and
4
η ij
(
gt
)

the number of triangles on gt having i and j as summits.4

The two positive parameters, α and β, capture the imperfect knowledge spillovers that

flow through local connections: α scales the knowledge spillover from a direct neighbor,

β gives the spillover that flows through any path of length two from some other, provided

there is no direct link to that agent. Parameter γ scales the positive externality captured

4That is also the number of common neighbors of i and j, or the number of paths of length 2 between

i and j, provided there is a direct link between i and j.
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by i for each indirect connection of length two to any direct neighbor. It captures both

the knowledge spillover flowing on such a path, and the closure effect.

It should be noted that, according to this payoff specification, agents are assumed

to only consider social network externalities at geodesic distance less than or equal

to two (d(i, j) ≤ 2). This is a natural assumption for the closure effect, but needs

to be justified for the knowledge spillover effect. One convincing justification for not

considering knowledge flows at distances strictly greater than two is provided by Singh

(2005) and Breschi and Lissoni (2006), who show that the probability of patent citations

decreases sharply in function of the social distance between patent inventors, and that

these spillovers are null or nearly null at a social distance equal to or greater than three.

It should also be noted that externalities are here associated with paths, and not agents.5

Therefore, one agent may benefit from another agent via different paths, the total gain

from that second agent being additive to the gain from each path.

2.3 Bilateral incentives to form connections

We now focus on the bilateral incentives to form connections, once two unconnected

agents have just met. Agents can bargain bilaterally when they consider forming a

link together and operate sunk bilateral transfers, in particular when these transfers

are necessary to convince one of the two agents. This assumption is consistent with

the idea that, in research collaboration, not all agents contribute equally: often more

peripheral agents accept to contribute more to a project, which materializes here as a

bilateral transfer. Since agents do not consider the further moves induced by their present

collaboration, the transfers are rationally limited to the private returns generated by the

link. Agents are, however, not allowed to subsidize the formation of a link they are not

directly involved in, which is also a reasonable behavioral assumption. Therefore, the

total variation of expected worth for the two agents, due to the creation of a new link

between them, constitutes the (dyadic) incentives to form connections, whatever the

effective bilateral transfers they operate. Let ∆(gt, ij) denote that variation of agents

i and j discounted payoffs, if link ij is created while the network gt is in place (with

ij /∈ gt). Using Equations 1 and 2, this is given by:

∆(gt, ij) = 2
(
θij + εtij − ζctij

)
(3)

+
1

1− δ

(
2α+ βη̄ij

(
gt
)

+ (4γ − 2β)
4
η ij
(
gt + ij

))
,

5As in the connections model (Jackson and Wolinski, 1996), for instance.
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with η̄ij
(
gt
)

the number of non-common neighbors of i and j on gt,6 and with
4
η ij(g

t) the

number of common neighbors of i and j defined above.7 The first component of the right-

hand side of Equation 3 is related to the per period average joint gain of the research

collaboration. The second one captures the net present value of the variation in the flow

of network payoffs, due to the new link ij having been added to gt. All the agents discount

time by factor δ. The variation in the per period payoffs is composed of the payoffs

obtained thanks to: two new direct relations, η̄ij
(
gt
)

new indirect relations between

agents not having a direct link, 4
4
η ij
(
gt + ij

)
new indirect relations between agents

having a direct link, and 2
4
η ij
(
gt + ij

)
less indirect relations between agents having no

direct link on gt. The following example illustrates how exactly these computations are

made.

Example 1 Let us consider the network g = {ix, jx, iv, iu, iy, yj, js} depicted in Figure

1, and let us focus on the potential formation of a new link between agents i and j that

does not exist in g. It should be noted that here, η̄ij (g) = 3,
4
η ij(g + ij) = 2. Thus,

according to Equation 3, the new link ij would bring to the dyad an expected average net

payoff of (1− δ) [∆(g, ij)] = 2 (1− δ)
[
θij + εtij − ζcij

]
+ [2α+ 3β + 2 (4γ − 2β)]. Let us

explain the second term of the right-hand side of this equation, which corresponds to the

variation in the per period network payoffs. The dyad first enjoys the returns of two

new direct connections (j with i and i with j), each providing an α. Thanks to link ij,

i benefits from the returns of four indirect connections, provided there is a direct link:

two that point to j ({ix, xj}, and {iy, yj}), one that goes to x ({ij, jx}), and one to

y ({ij, jy}). Simultaneously, two indirect connections, provided there is no direct link,

have disappeared ({ix, xj}, and {iy, yj}) on g+ij. The same occurs for j, which explains

the multiplication by two.

2.4 Network evolution and empirical strategy

The relational network emerges gradually from the uniform meeting process exposed

above and the willingness of agents to form links. The social network is not assumed

to be at equilibrium but in some, possibly transient, state. In our context, new agents

enter the population at all periods, and connection costs evolve over time. Therefore,

to assume that the network would be at equilibrium would amount to considering that

6That is, agents in the direct neighborhood of i (j), but from which the other agent j (i) does not

already benefit (at a social distance strictly greater than two).

7It should be noted that, by definition: η̄ij
(
gt
)

+ 2
4
η ij(g

t + ij) = ηi
(
gt
)

+ ηj
(
gt
)
, where ηi

(
gt
)

denotes the number of neighbors of agent i in gt.
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agents could rearrange all their collaborations at each period, which would obviously not

be consistent.8

At each period of time, with the network gt being in place, and provided that the

link between i and j does not already exist, the probability of a dyadic connection being

established between the two agents is written Pr(gt+1
ij = 1|gt, gtij = 0). As explained

above, at each period, any pair of unconnected agents i, j ∈ N t is randomly chosen with

a given constant and a non-null probability p and, provided that two agents i and j

meet, a link will be formed between them, if ∆(gt, ij) > 0. We further assume that

εtij ∼ Logit, and we denote F (.) its associated cumulative distribution function. The

probability of i and j forming a collaboration in period t is thus given by:

Pr
(
ij ∈ gt+1

∣∣ij /∈ gt ) = Pr(∆(gt, ij) > 0)× p ∝ F (∆̄(gt, ij)), (4)

with ∆̄(gt, ij) ≡ ∆(gt, ij) − εtij . We propose to estimate Equation 4 by relying on the

following specification of the incentives to form a bilateral collaboration:

1

2
∆(gt, ij) = β1 + β2ηij

(
gt
)

+ β3
4
η ij
(
gt + ij

)
+ θij + εtij + β4c

t
ij , (5)

where θij is the time-invariant fixed effect, and εtij the error term. This expression is

directly derived from our specification of the bilateral payoffs of a link formation exposed

in Equation 3, with β1 = α
(1−δ) , β2 = β

2(1−δ) , β3 = 2γ−β
1−δ and β4 = −ζ. If 2γ < β, then

β3 > 0, and thus the number of triangles should impact positively the incentives for

forming links. Though the significance and the sign of β3 is our primary interest here,

we will also be concerned with β2 being positive and significant, which would provide

support for the idea that the collaboration network is a vehicle for knowledge spillovers.

3 Data and variables

Our primary empirical evidence is built upon all European patent applications, of which

at least one inventor has declared an address in France, and the priority date of which is

between January 1978 and December 2004 included. All non-French inventors of these

patents have been excluded. Before describing the co-invention network and the various

explanatory variables, we first describe the procedure we developed to disambiguate

inventors, a major issue when tackling large network data based on administrative files.

8Carayol and Roux (2008) adopt the alternative perspective by studying inert components, assuming

that they reach some stable state.
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3.1 A Bayesian methodology to disambiguate inventors’ names

For each inventor listed in a patent document, her/his name, first name and personal

address information are available, but a unique identification is not. This raises a dis-

ambiguation issue, or a “name game”, according to Trajtenberg et al. (2006), due to

the homonymy of inventors and to spelling errors. Most often, such errors should not

be neglected, since an accumulation of small identity errors could easily trigger great

changes in the network data. For instance, a positive error of homonymy would lead

to considering that different persons are the same, thereby mistakenly generating some

apparently extremely connected agents who would abusively link different communities.

A negative error of homonymy would lead to ignoring the role of bridging agents. As

is well known in the literature on networks, many network statistics are very sensitive

to such errors. Therefore, the use of the information on patent inventors necessitates

the correct identification of individual identities in patent data through some reliable,

systematic and reproducible methodology.

Though a growing literature tackling this issue is emerging,9 a widely accepted stan-

dard has not yet been fixed, and a whole range of more or less ad hoc techniques can

be seen. Any disambiguation procedure needs, in particular, to have a filtering step, in

which different observable attributes, already listed in the patent dataset, are used to

provide similarity scores to determine whether two homonyms refer to one and the same

person. Most of the methodologies used at this stage are not based on clear theoretical

grounds, and thus encounter two major drawbacks. First, they arbitrarily assign a given

increase in their similarity scores when they record that two homonyms have the same

modality for variable. But should, for instance, information about the city of residence

contribute more or less to the similarity scores than information about the technological

classes? Second, the relative frequencies of each variable modality are not taken into

account. Clearly, it is not as informative to observe that two homonyms live in Paris

rather than in a small town, and we would like to know what difference this makes

exactly.

In line with Carayol and Cassi (2009), we adopt a Bayesian methodology for estimat-

ing the probability that two homonyms are the same person, given a series of observables

provided by the data. This methodology, further detailed in Appendix A, completely

overcomes the two drawbacks encountered by other studies, as stressed above. Out of

133,764 patents considered, we find 262,186 patent×inventor occurences that correspond

to an address in France. We use the following list of observable attributes of individuals:

9For a review, see Miguélez and Gomez-Miguélez (2011).
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name and first name, address (the full string and the extracted name of the city), techno-

logical class, patent citation, applicant (at company and group level). Our methodology

also makes use of an empirical benchmark of nearly five thousand reliable (positive or

negative) matches. We thus know that we were able to reach ninety-eight percent correct

inferences out of a linear combination of positive and negative errors in the benchmark.

Out of a total initial population of 126,887 agents, we obtain 103,309 French inventors.

3.2 The French co-invention network

Of those 103, 309 French inventors, 82, 994 invented a patent with at least one other

French inventor over the period 1978-2004. In the evolving co-invention network, connec-

tion exists if two persons have already invented at least one patent together. Implicitly,

we assume that all inventors of a patent are personally acquainted. This assumption,

which is standard in the literature on co-authorship networks (see e.g. Newman, 2004;

Moody, 2004; Goyal et al., 2006), is even more acceptable in the co-invention context,

since co-invented patents (with at least two inventors) mostly involve small teams of

collaborators: the average and median numbers of inventors of co-invented patents are

respectively 2.8 and 2, with a standard deviation equal to only 1.19. Different assump-

tions can be made about the duration of a link. As is usually done in the literature (e.g.

Singh, 2005), we will here mostly rely upon a five-year backward-moving window. How-

ever, we have also computed network data on an alternative ten-year moving window,

for the cumulated network. Table 1 provides some basic statistics for each of these three

networks in the last year of our sample (2004). As could be expected, the number of

connected agents changes in function of the assumption made about link duration. Note

that the largest component of the cumulated network represents 50% of the whole pop-

ulation (62% of the connected agents). As a point of comparison, the largest component

of scientific co-authorship networks rarely includes less than 70% of the population10.

Such a discrepancy may be explained by a greater density of the co-authorship net-

works.11 One could also argue that technological knowledge may be more fragmented

than scientific knowledge, or that the institutional configuration could generate a higher

fragmentation of the population of inventors than authors, who evolve in a more open

scientific mode of knowledge production. A very interesting statistic for our study is

10See, for instance, Newman (2001) where a 5-year window is taken into account, and Barabasi et al.

(2002) where the data cover a 8-year period.
11It is a well-known property of both random and scale-free networks that increasing network den-

sity non-linearly leads to the emergence of a “giant component” tending to encompass almost all the

population (Erdos and Renyi, 1960).
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the average clustering coefficient. This gives the (averaged among all connected agents)

number of triangles to be found in agents’ neighborhoods, divided by the number of all

the triangles that could be built between these neighbors. We find high values of the

average clustering (between 53 and 59%), a result which is very close to those usually

found in large social networks.

3.3 Variables

We now present the variables that will be used in the regressions. They include network

variables that are reliable, thanks to the disambiguation of inventors’ names, geograph-

ical and technological distances directly extracted from patent data, and applicant data

that rely both on the cleaning of the applicant field of patent data and the match of

patent applicants with companies names in mandatory national surveys of companies.

Descriptive statistics on all variables are presented in Table 2. Since the fixed ef-

fect approach we use in our econometric estimations deletes all dyads with only null-

dependent variables (no link is ever formed), the data are limited to the yearly obser-

vations of the dyads that are eventually formed. Moreover, since the variability in the

explanatory (cost) variables comes from the observation of at least one previous patent,

we only consider the 97, 551 dyads in which an inventor has already invented at least

one patent. Each one of these dyads is observed starting from the first year the two

concerned agents are considered to be part of the population of inventors,12 until the

link is formed (that year being included). These dyads involve 54, 886 distinct inventors.

All in all, there are 407, 001 dyad×year observations.

3.3.1 Network variables

The dependent variable gt+1
ij is a dummy, equal to one if the link between the two active

agents i and j is formed in year t+1, and zero otherwise. This concerns the period 1983-

2004. For each year t during the period 1982-2003,13 we calculated the two explaining

variables of major interest on the 5-year window network gt, namely the number of

non-common neighbors ηij
(
gt
)

and the number of common neighbors
4
η ij
(
gt
)
.14 We

12In order to build the unbalanced panel data set, we had to formulate some assumption about the

entry of inventors in the population. An inventor is considered as active three years before his first

patent application year.
13There is a one-year lag for all explanatory variables compared with the dependent variable, as

suggested by the theoretical model.
14The five-year window was used, since it is the one most commonly employed in similar network

empirical studies. However, a larger ten-year window will also be used to build the right-hand side
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also computed a series of network controls (noted net controlstij) that concerns the time-

variant network attributes of inventors of each focal dyad: the average number of patents

per year of the two agents, the rate of difference (absolute value of the difference divided

by the mean) of agents’ degree and the rate of difference in their average number of

patents.

3.3.2 Geographical and technological distances

As patent data mention the personal addresses of inventors, we were able to locate

inventors in the metropolitan French area by matching the post codes mentioned in their

addresses with their corresponding latitude and longitude coordinates.15 By means of

name disambiguation, we were able to identify inventors who changed location: as many

as 11, 970 of the connected inventors declared at least two different addresses. Most

geographically mobile inventors remain in the same area: nearly 79% (86%) of mobile

inventors have a maximal distance between their different locations of less than 20 km

(50 km).

The Euclidean geographical distance can be computed for any pair of addresses,

given their coordinates (latitude and longitude). Since some agents change location,

more than one distance may be associated with a pair of connected agents: some pairs

of agents invent together on several occasions, while at least one of the two changes

addresses in the meanwhile. If we restrict ourselves to our data set of dyads, matters are

much simpler. Overall, we have identified more than 145, 000 distances (in kilometers)

between co-inventors. If we just consider the distance for the year in which the link

is formed, we observe that the distribution of connections, according to the geographic

distance between agents, is very skewed. More than 63% of the connections are achieved

between inventors that live at less than 50 km from each other, while fewer than 6.2%

of the connections are formed between agents who live at more than 550 km from each

other. Figure 2 presents the histogram of the geographic distance between inventors,

restricted to the dyadic observations of the year when the link is formed. The variable

geotij , which is equal to twice the geographic distance (as suggested by the theoretical

model) between agents i and j at period t, accounts for some of the connection costs.

For each pair of inventors, in each year, we have also computed the technological

distance. This has been defined using the similarity measurement proposed by Jaffe

network variables in the robustness check analyses. By doing so, we lose five years of observation and

the covered period is 1988-2004 for the dependent variable and 1987-2003 for the explanatory variables.
15Those coordinates were kindly provided to us by the IGN (Institut Géographique National).
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(1988), i.e. un-centered correlation measurement of two inventors’ distribution vector of

patents over 30 technological IPC classes defined by OST (2010). It is given by :

jaffetij = 1−
∑

k n
k,t
i nk,tj((∑

k

(
nk,ti

)2
)∑

k

(
nk,tj

)2
)1/2

,

with nk,ti the number of patents i invented in technological class k before year t. Alter-

native measurements of technological distance, such as the Euclidean or the Manhattan

distance, have also been computed (see robustness check in the following section).

3.3.3 Applicants

The association of inventors to applicants on a yearly basis has been based on the

two following principles: i) the inventor is associated with her/his first applicant and

permanently if she/he does not switch to another applicant; ii) if the inventor switches

to a new applicant, she/he is associated with that new applicant from the year of the

application of the new patent.

To account for the institutional costs of collaboration, a dummy variable, apptij was

created: it is equal to unity if i and j have ever been associated with the same applicant.

We also identify public research institutions (universities and other public bodies) among

all the applicants of our database. This variable is of interest for us since we hypothesize

that, when inventors are in the academic sphere, they may follow different behavioral

patterns, somewhat reducing the perceived costs of collaborations. The dummy variable

acadtij captures this: it is equal to unity if one of the two agents has already invented a

patent for which the applicant is a public research institution.

A final step in the enrichment of our data proceeded as follows. We matched the

patent dataset with the French R&D surveys conducted annually by the French Ministry

of Research, using the name and location of applicants-companies as matching key. These

surveys, exhaustive for all the companies employing at least one full-time researcher

(whatever their size), provided us with annual data on companies’ R&D internal and

external expenditures, number of researchers, as well as more general information, such

as total number of employees. We then deflated R&D internal and external expenditures

by a national investment price index. Information concerning the applicants associated

with the inventors has been used to build dyadic variables (denoted app controlstij), both

by summing for the two agents and by calculating the rate of difference (the absolute

values of the difference within the dyad divided by the sum). Though the surveys on
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companies used are exceptionally extensive, it was not possible to obtain this information

for every applicant in the dyad, or for every year. This results from a sharp decrease in

the number of observations available: approximately 130 thousand observations for all

dyadic sums, and approximately ninety-three thousand observations for all the dyadic

sums and all the differences within the dyad.

4 Estimations and results

The direct empirical counterpart of the theoretical model described in Equations 4 and

5, is given in the following equation:

Pr
(
ij ∈ gt+1

∣∣ij /∈ gt ) = F

(
β1 + β2ηij

(
gt
)
) + β3

4
η ij
(
gt
)

(6)

+ β1
4geotij + β2

4 jaffetij + β3
4apptij + β4

4acadtij

+β5app controlstij + β6net controlstij + θij
)
.

The significance and sign of parameters β2 and, in particular, β3 are our main interest,

provided that we properly control for the benefits and costs of link formation. To do so,

we have introduced a fixed effect θij that accounts for the time-invariant matching quality

of the two agents which, we hypothesize, corresponds to the returns of the research

collaboration between i and j captured by these two agents. Controlling for time-

invariant fixed effect is, however, not sufficient since there may be some time-variant

factors that affect the probability of collaboration. Four variables introduced above

account for the costs, geographic distance (geotij) between agents, technological distance

(Jaffetij), having already invented for the same applicant (apptij), which we interpret as

being associated with the same institution, and having already invented for an academic

institution (acadtij) that may generate more collaborative research patterns.

Lastly, we include two series of controls: app controlstij and net controlstij . The

former refers to the research capacity of the applicant(s) associated with the inventors

of the dyad. This series includes the total internal and external R&D expenditures, the

number of researchers and the number of employees, as well as the difference rates of

these three variables between the two agents of the dyad. The second series of controls

concerns inventors’ time-variant network attributes: the average number of patents per

year of the two agents, the rate of difference of agents’ degree, and the rate of difference

in their average number of patents. These variables allow us to control, in particular,

for the time-varying individual propensities to patent (which may affect the probability
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p that is assumed to be uniform across dyads in the model).16

Our estimation strategy immediately raises a first issue. Allisson and Christakis

(2006) recently showed that the estimation of such a fixed effect logit model leads to

spurious estimates when the explanatory variables are trended. Therefore, as suggested

in Fafchamps et al. (2010), all quantitative explanatory variables are first detrended

by assuming a linear trend (we later relax this assumption by assuming other forms of

trend).

Table 3 synthesizes our main results. We find first that, as expected, the number of

neighbors that the two agents do not have in common always positively and significantly

impacts the probability of connection. This supports the idea that agents benefit from

indirect connections (at least at distance two), and that a natural justification for this

is network-based knowledge spillovers. Our second and most important result is the

following. When we do not properly control for the costs of network formation (no

control of costs in Column 1) or only account for technological and geographic distance

(in Column 2), the number of common neighbors is positively and significantly associated

with the probability to create a link. This result seems to indicate that agents like closing

triangles. However, when we extensively control for the connection costs, in particular

when we control for all applicant variables (Columns 3 to 5), it appears clearly that

this effect disappears and, even, that the number of common neighbors now significantly

decreases the probability of becoming connected.

We now raise a second estimation issue: our observations may not be independently

distributed, since all observations corresponding to dyads related to the same agent may

be correlated. The omission of correlation between observations may lead to an incorrect

assessment of the significance of some coefficients. We are in particular worried about

a possible overestimation of coefficient significance, but the contrary may also occur.

One simple way to correct for such a bias is clustering. However, regressions clustered

on several variables are still not available, to the best of our knowledge. Of course,

it would be possible to cluster on the dyads, but this is not what we would like to do,

preferring instead to cluster on each member of the dyad. To do so, in all the estimations

presented, we cluster observations on the identity of the agents “on the left” of the dyad

(included in all regressions, among which those in Table 3, discussed above). In order

to control for a potential correlation of dyadic observations related to the same agent

listed “on the right” of the dyads, we also run all estimations on restricted samples

in which only one dyad of each agent “on the right” is randomly selected, and all the

16Fafchamps et al. (2010) use similar network controls.
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dyads involving one agent “on the right” who is also present on the list of agents “on

the left”, are discarded. Since this strongly reduces the size of the dataset (down to

sixty-four thousand observations), such a restriction is likely to seriously underestimate

coefficient significance. However, the estimation results on the restricted sample (see

Table 4) remain qualitatively the same as those obtained on the full sample as regards

the impact of the number of non-common neighbors. Only the impact of the number of

common neighbors becomes non-significant in the last two regressions (Columns 4 and

5), which more fully control for the costs of link formation. It should be noted that these

coefficients remain negative. However, significance here is much likely to be lost, due to

the massive reduction of the number of observations (down to fewer than 20 thousand

dyads, which represents more than 20 times fewer observations than in the complete

sample).

The two main results appear to be globally robust to a long list of robustness checks.

All the supplementary regressions we discuss below are reported in Appendix B. The

results are, in particular, robust to different assumptions about the trend of the quantita-

tive explaining variables: the results do not change when we assume either a logarithmic

or a quadratic trend (Tables B1 and B2). When a larger time-window (ten years) is

retained to build the right-hand side networks variables (Table B3), the results on the

impact of the number of common neighbors remain the same. However, it appears then

that the number of non-common neighbors negatively affects the probability of connect-

ing. This could be explained by the lower influence of (older) non-common neighbors on

the probability of connecting. It could also be due to the assumption that agents never

retire or die: older agents are those most likely to have larger neighborhoods, while they

are also more likely to be no longer active. This last remark could be interpreted as a

reinforcement of our positive result obtained for the five-year moving window networks.

The divergence with the main regressions is, however, limited since this coefficient re-

mains positive in the most complete specification (Column 6).

We were also concerned by a possible bias due to the simultaneous arrival of all

connections in the research teams inventing a patent. Closed groups could have been

formed before the patent is filed, and all closed links may have arrived simultaneously.

We therefore ran regressions on those dyads that become connected via a two-inventor

research team, which reduces the sample to approximately sixty-two thousand obser-

vations. The results (Table B4) show that the coefficients of the number of common

neighbors and of the numbers of non-common neighbors tend to lose significance in the

complete models, but also that the number of non-common neighbors remains significant

when we restrict the sample to one unclustered dyad per agent (Table B5). Other, more
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minor and unreported robustness checks (the use of other forms of indexes of techno-

logical distance, various lists of controls, non-linear effects), show that the main results

remain unchanged.17

The impacts of the cost variables are also interesting in themselves. We find that

all the cost variables are always significant, and that the coefficients always have the

expected signs: geographic distance and technological distance significantly decrease

the probability of becoming connected. Having previously had one common applicant

strongly and positively affects that probability. Interestingly, if one inventor has already

invented for an academic applicant in the dyad, the probability of forming a connection

is higher, which highlights the role of academics in creating connections among inventors.

5 Conclusion

The main result of our paper is that inventors do not like closing triangles per se. Some

econometric specifications tend, even, to support the idea that they dislike doing so.

This result is obtained thanks to the availability of very precise data that account for

the time-varying costs of network formation, and the possibility of controlling for the

dyadic time-invariant fixed effect in our longitudinal framework. This result may be

limited to our particular context, in which the institutions (mostly companies) have

incentives to create the conditions for the enforcement of cooperative behaviors between

their employees. Even though different conclusions may be obtained, for instance, in

friendship networks or in risk-sharing networks, our results call, however, for properly

controlling for the costs or network formation in any context, before assessing whether

agents like triadic closure.

If we now examine the consequences of our findings for innovation policy, we should

first stress that our results are consistent with the idea that professional social networks of

inventors are conducive to positive externalities due, for example, to knowledge spillovers.

Since, in addition, the transfers between agents are limited,18 inventor networks are likely

to be less than optimally dense. This provides a rationale for innovation policy to focus

on the community of inventors (rather than on companies) and to sustain the formation

of connections among inventors. To be more specific, we also highlight the finding that

the costs of link formation across institutions, in particular, are higher. Since these links

mediate knowledge spillovers, their social value is likely to be very high, because they

are non-redundant, much higher than their private returns for the directly concerned

17All results can be obtained from the authors.
18In particular, between agents that are not connected; see Bloch and Jackson (2007) on this point.
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agents. It is these links that need to be targeted by innovation policy. Two factors could

contribute significantly to building these bridging links: the number of academics who

are likely to collaborate with different companies, and an active labor market of mobile

inventors.
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Table 1: Descriptive statistics of the 2004 co-invention networks built with different

assumptions about the duration of links.

cumulated 10-year window 5-year window

# isolated agents 20, 315 53, 555 73, 063

# connected agents 82, 994 49, 754 30, 246

# links 161, 724 92, 756 51, 763

# of components 10, 198 7, 104 5, 586

largest component size 51, 761 24, 744 7, 357

2nd largest component size 82 153 130

av. degree (all agents) 3.13 1.80 1.00

av. degree (connected agent) 3.89 3.74 3.42

av. clustering 0.53 0.57 0.59
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Table 2: Descriptive statistics of the dyads that are formed at some point, observed

from the year the two agents are considered as active, until the year the link is formed

(included).

Variable Mean Std. Dev. N

network common 0.11 0.73 407,001

variables non-common 4.73 6.79 407,001

geo distance 265.91 395.83 407,001

cost Jaffe tech distance 0.49 0.46 407,001

variables public research 0.11 0.32 407,001

common applicant 0.16 0.37 407,001

cpny researchers 819.66 1635.14 154,535

RD dpt size 1912.3 3355.97 154,535

applicant controls internal RD 216,785.65 588,788.08 154,535

(sum in the dyad) external RD 52,692.32 139,987.39 147,743

cpny size 19,212.2 55,975.64 154,535

cpny turnover 1,994,384.71 8,439,402 154,535

diff. cpny researchers 0.18 0.35 129,133

diff. RD dpt size 0.18 0.36 129,133

applicant controls diff. internal RD 0.18 0.35 129,133

(difference in the dyad) diff. external RD 0.21 0.38 111,472

diff. cpny size 0.18 0.35 129,120

diff. cpny turnover 0.2 0.37 119,898

av. productivity 0.38 0.44 407,001

net controls diff. in degree 0.64 0.45 407,001

diff. in productivity 0.71 0.39 407,001
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Figure 2: Distribution of first connections according to the geographic distance (in km)

between the connected agents.
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Table 3: Conditional logit on the occurrence of the first connection, All sample, five-year

window network, linear detrending.

1 2 3 4 5

non-common 0.0321*** 0.0328*** 0.0276*** 0.0313*** 0.0220**

(7.65) (7.83) (4.73) (3.74) (2.66)

common 0.199*** 0.204*** -0.529*** -0.255*** -0.138**

(12.50) (12.75) (-6.36) (-3.77) (-2.62)

geo distance -0.00132*** -0.00143*** -0.000621*** -0.000764***

(-33.90) (-33.41) (-8.25) (-8.90)

Jaffe tech distance -0.339*** -0.258*** -0.507*** -0.580***

(-6.14) (-3.74) (-4.41) (-4.76)

public research 23.13*** 21.83*** 19.30***

(129.55) (56.44) (44.56)

common applicant 31.71*** 24.75*** 22.75***

(11.90) (178.41) (266.21)

network controls yes yes yes yes yes

applicant controls sum no no no yes yes

applicant controls diff. no no no no yes

observations 407,001 407,001 407,001 129,924 93,215

t statistics in parentheses

∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

Clustered standard errors in parentheses on the identity of the agent “on the left” of the dyad.
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Table 4: Conditional logit on the occurrence of the first connection, sample restricted to

one randomly chosen dyad per inventor “on the right”, five-year window network, linear

detrending.

1 2 3 4 5

non-common 0.123*** 0.125*** 0.105*** 0.162*** 0.150***

(10.88) (10.93) (8.47) (5.28) (6.07)

common 0.306*** 0.311*** -26.51** -4.209 -0.879

(4.34) (4.46) (-3.14) (-0.26) (-1.57)

geo distance -0.00148*** -0.00131*** -0.000726*** -0.000908***

(-18.96) (-12.32) (-4.42) (-5.28)

Jaffe tech distance -0.455*** -0.506*** -0.730* -0.783*

(-3.44) (-3.89) (-2.32) (-2.48)

public research 19.94*** 20.74*** 20.12***

(56.10) (15.89) (24.34)

common applicant 242.2*** 35.83 22.63***

(3.61) (0.57) (21.05)

network controls yes yes yes yes yes

applicant controls sum no no no yes yes

applicant controls diff. no no no no yes

observations 63,820 63,820 63,820 19,907 12,856

t statistics in parentheses

∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

Clustered standard errors in parentheses on the identity of the agent “on the left” of the dyad.
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Appendix A: A Bayesian methodology to disambiguate in-

ventors’ names.

Introduction

In this Appendix, we present the basic features of a Bayesian methodology for estimating

the probability that two ex ante different identities correspond to the same person, given

a series of observables provided by the data.19 This methodology has been presented

much more extensively in a technical note wroten by two of us (Carayol and Cassi, 2009).

In the second section of this appendix, we show how this methodology applies to the

disambiguation of patent inventors. We also briefly present the results we obtain on

an actualized data set of French inventors. The disambiguated data produced are basic

inputs for the article to which this Appendix is attached (Carayol et al., 2014). Other

methodologies have been developed and applied on patent data in recent works, such as

Trajtenberg et al (2006), Pezzoni et al. (2014) or Li et al. (2014).

Methodology

According to Raffo and Lhuillery (2009), any procedure of disambiguation should be

performed in three stages i) a parsing stage, finalized in the standardization and cleaning

of different data set fields; ii) a matching stage, where different algorithms could be

used to group homonyms; iii) a filtering stage, where different sets of information (i.e.

observable attributes already listed in patent data sets such as, for instance, technological

class) are used to give a similarity score in order to determine whether homonyms refer

to the same person. If the two first steps are essentially technical, the third one requires

non-trivial methodological issues to be solved. Here, we focus on this third step, since

the first two have already been treated. Basically, it consists in establishing criteria for

assigning similarity scores between homonyms.

Let us first consider a list I of ex ante agents i defined in the most disaggregated

way possible. Each ex ante agent i is characterized by a series of K variables20 labeled

Xk, with k = 1, ...,K. The main goal of the methodology proposed here is to provide

an estimation of the probability that any ex ante agent i is the same person as some

other ex ante agent j. In short, we are in search of the partition π = {C1, ..., Cm} of I,

19Though this methodology has been developed for inventors in patent data, it can be applied to other

similarly structured data.
20See Table A1 below to have the list of variables we use here.
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the m elements of which should correspond to the correct ex post identities. We note

{i, j} ⊂ Ch, ∀h = 1, ...,m by writing “i = j”.

In order to assess the probability of that event, we must rely on observables of agents

i and j, that is the observed realizations xki and xkj of random variables Xk
i and Xk

j for

all k = 1, ...,K and their respective frequencies of occurrence. All these variables are

independent and ∀k = 1, ...,K;∀i, j, Xk
i and Xk

j have the same support. Without loss

of generality, let us assume that we observe xki = xkj , for all k = 1, ..., k̄−1 and xk
′
i 6= xk

′
j

for all k′ = k̄,...,K. One may think of j as an identity which first appears in the data,

and then a new identity i appears and one wants to check whether i and j identities

correspond to the same person. We have some information on j and i from which we

can use. In short, we would like to estimate the following conditional probability:

Pr
(
i = j

∣∣∣Xk
i = xkj , ∀k = 1, ..., k̄ − 1 and Xk′

i 6= xk
′
j , ∀k′ = k̄, ...,K

)
. (7)

In principle, it could be possible to apply Bayes’ rule to calculate (7). However, it is not

possible to compute Pr(i = j), and thus it is not possible to compute the conditional

probability using Bayes’ rule. One way to avoiding this difficulty is to focus on the

similarity score ∆ (i, j), defined as follows. It is the probability that i = j, knowing that

indeed Xk
i = xkj ,∀k = 1, ..., k̄ − 1, divided by the probability that i = j, knowing that

Xk′
i 6= xk

′
j ,∀k′ = 1, ..., k̄ − 1, other things remaining the same. This differentiates out

Pr(i = j) and it can be shown that the similarity score is equal to:

∆ (i, j) = Πk=1,...k̄−1

(
1− εk

)
εk

× Ωk (i, j) , (8)

where εk ≡ Pr
(
Xk
i 6= xkj |i = j

)
is the probability that any individual changes kth,

observable between two invention occurrences, and where Ωk (i, j) ≡
(

1− Pr(Xk
i = xkj )

)
/
Pr(Xk

i = xkj ) , that is the probability that the two ex ante agents i and j have a

different kth observable divided by the reverse (irrespective of the fact that they are

or are not the same persons ex post). The latter term accounts for the frequency of

occurrence of the observables (xkj through Ωk (i, j) in Equation (8)). As will be shown

in the next section, these two probabilities εk and Ωk can be estimated iteratively.

At this point, let us assume that we know the relevant threshold value ∆̄ for the

similarity score below which two ex ante agents should be considered as different agents,

and above which they should be considered as being the same person.21 Then, a

21We show in the next section how we make use of a benchmark sample to compute this threshold.
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transitivity issue arises. For instance, consider three ex ante agents z, w and h and

∆ (h,w) < ∆̄ < ∆ (z, h) < ∆ (z, w). In this situation, ex ante agents z and w will ex

post be considered as referring to the same person. The same applies to z and h. If these

two statements hold true, h and w should also be the same person ex post by transitivity,

even though their similarity score is below the threshold value. We thus need to modify

the values of ∆ (h,w) so as to take into account the transitivity of identities. To do so,

an algorithm is proposed in order to modify the values of ∆ (i, j) .

Algorithm

For all considered pairs of distinct ex ante agents i and j, we apply:

∆ (i, j)←↩ max

(
∆(i, j); max

k∈I\{i,j}
min(∆(i, h); ∆(j, h))

)

recursively until one can not find any triplet of distinct ex ante agents h, i, j ∈ I,

such that:

∆(i, j) < min (∆(i, h); ∆(j, h)) .

Data, estimation and results

Our empirical evidence is built upon all European Patent Applications for which at least

one inventor has declared an address in France, with a patent priority date between Jan-

uary 1978 and December 2005. All non-French inventors of these patents have been

deleted. The data set counts 136, 285 patents and 266, 724 inventor×patent occurrences.

At this stage, the total number of ex ante agents corresponds to all the inventor×patent

occurrences that can be observed (for instance Pierre Dupont/Patent X; Pierre Dupont/

Patent Y; Olivier Dupuy/Patent Y and so on). This represents our list of ex-ante in-

ventors, I. The variables used for computing similarity scores are presented in Table

1.

Table A.1: The variables used to build the similarity scores.
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Variables

X1 : name & first name

X2 : assignee

X3 : city

X4 : IPC (6 digits)

X5 : citation link

The name, first name and full address information are initially used to obtain a

starting partition of agents noted π0. Since full address information is used, we certainly

minimize incorrect aggregations.22 This partitioning generates an initial evolution of the

set of agents, reduced to 126,887 inventors. This evolution allows us to compute initial

conditional probabilities εk. However, the εk are underestimated here since the identities

are not yet sufficiently aggregated, and we thus encounter the risk of abusive aggregations

of agents. Therefore, we propose to process identities recursively, which allows us to

progressively determine both the identities and the εk. The first similarity scores are

computed for the 1,074,946 couples of agents, taken from the previous step, with the

same and first name.23 A precautionary conservative rule is at this step arbitrarily

adopted: a high value is given to the threshold ∆̄ which defines, after having applied

the transitivity algorithm, a new partition π1. Then, at each stage t ≥ 2, the partition

obtained from the previous period πt is considered, and new conditional probabilities εk,

new similarity scores and a new threshold ∆̄ are computed. All pairs of agents whose

similarity score is above the threshold are aggregated within the elements of πt+1. That

partition defines a new population of agents taken as an input in the next iteration.

This process is repeated until it converges to an equilibrium partition, π∗, which will

constitute the final set of inventors.

Fixing the value of the threshold, ∆̄, is obviously a key issue, which deserves careful

attention. In order to determine this threshold, we rely on a benchmark data set. A list

of French faculty members was matched with the patent data set on the basis of the name

and first name of their inventors. Checks on the internet and phone calls to the faculty

22The full string, reporting the city and street address, is considered. The probability of two different

persons having exactly the same name and first name have the same address (i.e. living in the same

building) can reasonably be assumed to be equal to zero. However, it may happen that the company

address is reported as the inventor’s personal address. Such cases were checked in the data and treated

separately.
23Without relying on the location data at this stage, because addresses were used in defining the

identities so that the probability of moving is here null by assumption.
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members were made in order to verify that they are the inventors of patents when their

first name and name are mentioned therein. In all, reliable information was collected on

445 French scholars.24 Their positive and negative declarations have been transformed

into assertions on the fact that an ex ante agent i and another agent j who have the same

name and first name refer to the same person. In all, we have 4, 989 assertions, 4, 567 of

which are positive and 422 are negative. This sample of positive and negative couples of

agents identities is used as a reliable benchmark to select the appropriate value of the

threshold in the interim stages. For each threshold value chosen, the share of positive

errors ε1 and the share of negative errors ε2 (in the benchmark) are computed, as well

as any linear combinations of these two values: φ (θ) = θε1 + (1− θ) ε2, with θ ∈ [0, 1] ,

which accounts for any given weighting schemes of the two types of errors. A threshold

that would minimize φ (θ) for some θ is noted ∆̄ (θ). On our data set, it appears that

fixing the threshold equal to exp(12.49) minimizes φ (θ) for a wide range of θ, between

0.09 and 0.64. Our preferred value is θ = .1 because it avoids abusive aggregation of

agents.

Finally, the algorithm converges after four iterations towards a final population of

105,086 French inventors. Restricting ourselves to the period 1978-2004, we have 103,309

inventors.25 The benchmark can also be used to assess the quality of the terminal results.

If the most appropriate weighting scheme is θ = .1, the weighted share of errors obtained

is φ (.1) = 1.81%, which remains very low.

24We are indebted to the KEINS project and BETA at the University of Strasbourg for kindly allowing

us to use these data.
25It should be worth noting that, in order to solve the issue of homonomy betwen inventors, we make

use of all the data available to us (i.e. 1978-2005). Nevertheless, since the data for the last year (2005)

is not complete, we exclude it from our analysis of the co-invention network in the article.
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Appendix B: Robustness check regressions for the article:

“Unintended triadic closure in social networks.

Table B.1: Conditional logit on the occurence of the first connection, all sample, five-year

window network, log detrending.

1 2 3 4 5

non-common 0.0322*** 0.0329*** 0.0277*** 0.0314*** 0.0222**

(7.68) (7.85) (4.75) (3.76) (2.67)

common 0.199*** 0.204*** -0.527*** -0.254*** -0.137**

(12.54) (12.78) (-6.36) (-3.76) (-2.61)

geo distance -0.00132*** -0.00143*** -0.000623*** -0.000765***

(-33.92) (-33.43) (-8.27) (-8.92)

Jaffe tech distance -0.340*** -0.260*** -0.509*** -0.583***

(-6.17) (-3.76) (-4.43) (-4.78)

public research 22.63*** 21.83*** 19.29***

(126.78) (56.55) (44.59)

common applicant 31.02*** 24.75*** 22.75***

(11.70) (179.34) (266.78)

network controls yes yes yes yes yes

applicant controls sum no no no yes yes

applicant controls dif no no no no yes

observations 407,001 407,001 407,001 129,924 93,215

t statistics in parentheses

∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

Clustered standard errors in parentheses on the identity of the agent “on the left” of the dyad.
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Table B.2: Conditional logit on the occurence of the first connection, all sample,

five-year window network, quadratic detrending.

1 2 3 4 5

non-common 0.0320*** 0.0327*** 0.0275*** 0.0312*** 0.0219**

(7.63) (7.80) (4.71) (3.73) (2.64)

common 0.198*** 0.203*** -0.531*** -0.256*** -0.139**

(12.47) (12.71) (-6.36) (-3.78) (-2.63)

geo distance -0.00132*** -0.00143*** -0.000620*** -0.000762***

(-33.87) (-33.39) (-8.23) (-8.89)

Jaffe tech distance -0.338*** -0.256*** -0.505*** -0.578***

(-6.12) (-3.71) (-4.38) (-4.74)

public research 23.13*** 21.83*** 19.30***

(129.52) (56.34) (44.52)

common applicant 31.76*** 24.76*** 22.75***

(11.87) (177.49) (265.64)

network controls yes yes yes yes yes

applicant controls sum no no no yes yes

applicant controls dif no no no no yes

observations 407,001 407,001 407,001 129,924 93,215

t statistics in parentheses

∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

Clustered standard errors in parentheses on the identity of the agent “on the left” of the dyad.
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Table B.3: Conditional logit on the occurence of the first connection, all sample,

ten-year window network, linear detrending.

non-common -0.0178** -0.0161* -0.0185* -0.0105 0.00904

(-2.62) (-2.39) (-2.06) (-0.98) (0.93)

common 0.179*** 0.184*** -0.470*** -0.310*** -0.157**

(10.48) (10.73) (-6.16) (-3.95) (-2.72)

geo distance -0.00134*** -0.00144*** -0.000647*** -0.000770***

(-32.85) (-32.19) (-8.48) (-8.88)

Jaffe tech distance -0.420*** -0.336*** -0.544*** -0.542***

(-6.76) (-4.34) (-4.44) (-4.18)

public research 21.97*** 20.81*** 20.35***

(109.36) (60.84) (45.38)

common applicant 27.95*** 23.47*** 23.46***

(13.29) (145.10) (255.74)

network controls yes yes yes yes yes

applicant controls sum no no no yes yes

applicant controls dif no no no no yes

observations 347707 347707 347707 118839 86950

t statistics in parentheses

∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

Clustered standard errors in parentheses on the identity of the agent “on the left” of the dyad.

The observations before year 1988 were dropped to obtain a consistent ten-year window for each year considered.
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Table B.4: Conditional logit on the occurence of the first connection, sample limited

to the formation of inventor teams of size 2, five-year window network, linear detrending.

1 2 3 4 5

non-common 0.0533*** 0.0536*** 0.0288* 0.0371* 0.0257

(5.79) (5.82) (2.30) (1.99) (1.34)

common 0.257*** 0.269*** -0.513** 0.0137 0.0870

(5.89) (6.12) (-2.84) (0.13) (0.87)

geo distance -0.00153*** -0.00172*** -0.000634*** -0.000790***

(-19.59) (-18.89) (-3.85) (-4.40)

Jaffe tech distance -0.215 -0.0992 -0.333 -0.480

(-1.94) (-0.69) (-1.30) (-1.73)

public research 20.54*** 21.82*** 17.56***

(46.34) (22.06) (24.38)

common applicant 23.95*** 22.53*** 21.47***

(89.56) (126.59) (122.40)

network controls yes yes yes yes yes

applicant controls sum no no no yes yes

applicant controls dif no no no no yes

observations 62,690 62,690 62,690 18,994 13,965

t statistics in parentheses

∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

Clustered standard errors in parentheses on the identity of the agent “on the left” of the dyad.
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Table B.5: Conditional logit on the occurence of the first connection, sample limited

to the formation of inventor teams of size 2 and sample restricted to one randomly chosen

dyad per inventor “on the right”, five-year window network, linear detrending.

1 2 3 4 5

non-common 0.132*** 0.130*** 0.120*** 0.158*** 0.150***

(7.19) (7.11) (5.24) (4.38) (3.80)

common 0.465*** 0.478*** -1.163 -0.220 0.108

(4.72) (4.79) (-1.07) (-0.43) (0.29)

geo distance -0.00171*** -0.00189*** -0.000816*** -0.00106***

(-14.15) (-13.55) (-3.43) (-3.87)

Jaffe tech distance -0.343 -0.469* -0.884* -0.873

(-1.87) (-2.13) (-2.12) (-1.82)

public research 18.13*** 17.63*** 17.30***

(44.69) (28.13) (17.33)

common applicant 23.65*** 21.96*** 20.76***

(3.88) (57.42) (72.31)

network controls yes yes yes yes yes

applicant controls sum no no no yes yes

applicant controls dif no no no no yes

observations 26,669 26,669 26,669 7,337 5,101

t statistics in parentheses

∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

Clustered standard errors in parentheses on the identity of the agent “on the left” of the dyad.
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