
 
              

 

 
Application of periodic autoregressive process to the modeling  

of the Garonne river flows 
 

 
 
 

Eugen URSU 

GREThA, CNRS, UMR 5113 
Université de Bordeaux  
eugen.ursu@u-bordeaux.fr 

 
& 
 

Jean-Christophe PEREAU 

GREThA, CNRS, UMR 5113 
Université de Bordeaux  

jean-christophe.pereau@u-bordeaux.fr 
 
 
 

 
Cahiers du GREThA 

n° 2015-14 
April 

             
GRETHA UMR CNRS 5113 
Univers ité de Bordeaux 

Avenue Léon Duguit  -  33608 PESSAC  -  FRANCE 
Tel  : +33 (0)5.56.84.25.75  -  Fax : +33 (0)5.56.84.86.47  -  www.gretha.fr 

 



Cahiers du GREThA 2015 – 14 

Application of periodic autoregressive process to the modeling of the Garonne river 
flows 

Abstract 

Accurate forecasting of river flows is one of the most important applications in hydrology, 
especially for the management of reservoir systems. To capture the seasonal variations in 
river flow statistics, this paper develops a robust modeling approach to identify and estimate 
periodic autoregressive (PAR) model in the presence of additive outliers. Since the least 
squares estimators are not robust in the presence of outliers, we suggest a robust estimation 
based on residual autocovariances. A genetic algorithm with Bayes information criterion is 
used to identify the optimal PAR model. The method is applied to average monthly and 
quarter-monthly flow data (1959-2010) for the Garonne river in the southwest of France. 
Results show that forecasts are better off in the robust model rather than the unrobust 
model. The accuracy of the forecasts is also improved when the model is specified in quarter-
monthly flows, especially for the dry seasons. 

Keywords: River flows analysis, periodic time series, robust estimation, genetic algorithms, 
Garonne river 

 

Application des processus périodiques auto-regressifs à la modélisation des débits de la 
Garonne 

Résumé 

La prévision des débits d’eau des fleuves est l’une des principales applications en hydrologie 
et en particulier pour le management des barrages lors des périodes d’étiage.  Afin de 
repérer les variations saisonnières dans les données de débits d’eau, cet article développe 
une modélisation robuste pour identifier et estimer des modèles périodiques autorégressifs 
(PAR) en présence de données aberrantes. Dans la mesure où les estimateurs obtenus par la 
méthode des moindres carrés ne sont pas robustes à la présence de ces  données aberrantes, 
une estimation robuste fondée sur les auto-covariances résiduelles est réalisée. Un 
algorithme génétique avec le critère d’information de Bayes est utilisé pour identifier le 
modèle PAR optimal. La méthode est appliquée aux débits moyens par semaine et par mois 
de la Garonne dans le sud-ouest la France entre 1959 et 2010. Les résultats montrent que les 
prévisions sont meilleures dans le cas robuste (avec prise en compte des  données 
aberrantes) que dans le cas non robustes. La qualité des prévisions est améliorée quand le 
modèle est spécifié en semaine par rapport au modèle mensuel, en particulier pour les 
saisons sèches. 

Mots-clés : Analyse de débits d’eau, séries temporelles périodiques, estimation robuste, 
algorithmes génétiques, Fleuve Garonne  
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1. Introduction

In recent years there has been considerable research in the development
of time series models with seasonal or periodic properties in hydrology and
water resources (Vecchia, 1985a). The main objectives are to detect trends
and shifts in river flow records for a better planning and design of water
management policies. Issues at stake are related to urban water supply,
hydropower, irrigation management, flood and drought control, pollution,
protection of endangered fishes or migrating fishes, wetland and habitats
conservation (Baker and Vervier, 2004; Caballero et al., 2007; Oeurng et al.,
2011; Maire et al., 2013).

In practice and in the case-study of the paper, the Garonne River (located
in the southwest of France), river authorities aim at controlling the quanti-
tative management of water to achieve a good water status. The Garonne
Water Agency sets at different management points of the river some threshold
values for the river-flows to be reached every year during low water periods
between the 1st of July to October 31st. To ensure a good functioning of the
economic and ecological system downstream the management points, river-
flows have to remain above this minimal value. Below this value, water saving
measures and water discharges from dams and reservoir systems have to be
decided upstream the control points. The desired value of this threshold re-
sults from a informal negotiation between conflicting stakeholder economic
interests (farmers, hydropower plants, tourism activities ...) together with
ecological requirements imposed by the European Water Framework Direc-
tive. It consists in a daily value of the river flow measured in cubic meter
per second. For a given year, the water management program is said to be
efficient if the mean of the lowest stream flow for 10 consecutive days or the
mean of the lowest monthly stream flow over the last five years are above
80% of the reference value. The management is sustainable if this condition
is fulfilled 8 years out of 10. To deal with such issues, time series models can
be used to evaluate and improve the relevance of these water management
programs implemented by the Adour-Garonne Water Agency.

Seasonal time series models like the seasonal autoregressive moving aver-
age (SARMA) model developed originally by Box and Jenkins (1970, chapter
9) have been extensively studied in the literature and applied to river flows
displaying seasonal fluctuations in mean, standard deviations and skewness.
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However, as pointed out by McLeod (1993), river flows for a particular season
of the year may be statistically similar from year to year, but may depend in-
trinsically on the season. This feature cannot be captured by SARMA models
which represent a class of stationary models with large lag autocorrelations
that are invariant with respect to the season. Moreover as the correlation
structure of these time series depends on the season, many seasonal time se-
ries cannot be filtered to achieve second-order stationarity (Vecchia, 1985b).
The majority of river flow time series satisfy the property of periodic sta-
tionarity, stating that their mean and covariance functions are periodic with
respect to time. Hence the periodic correlation structure of time series jus-
tifies the use of periodic autoregressive (PAR) modelling in water resources.
Moreover the use of these models appears to be relevant and tractable for
analysing river flows at a quarter-monthly periodicity.

The method of moments based on Yule-Walker equations (McLeod, 1994)
and the least squares (LS) method in the univariate case (Franses and Paap,
2004) are efficient to estimate PAR models. As mentioned by Hipel and
McLeod (1994), when the seasonal data and the model for each season are
used rather than the annual data and the associated model, significant gain
in parameter efficiency can be achieved. However the main problem in PAR
modelling relies in the number of parameters that need to be estimated which
increases with the choice of the season for river-flows. Moving from monthly
surveys to quarter-monthly river flow data increases both the number of mod-
els and the number of parameters to be estimated. To obtain parsimonious
models, it is of interest to study situations in which linear constraints on the
parameters of a given season are introduced (Ursu and Duchesne, 2009). It
also justifies the use of genetic algorithm with Bayes information criterion
(BIC) to identify the optimal order of the PAR model. A second problem
in the parameter estimation of time series models occurs with the presence
of additive outliers that may imply serious problems. In particular the sen-
sitivity of the LS estimation method to outliers requires the use of robust
approach (Denby and Martin (1979) for autoregressive models of first order;
Ben et al. (1999) for vector autoregressive moving average (VARMA) mod-
els; Shao (2007) and Sarnaglia et al. (2010) for univariate PAR models). In
periodic vector autoregressive (PVAR) models, Ursu and Pereau (2014) im-
plement a robust estimation method based on residual autocovariances (RA)
to deal with additive outliers.

This article is organized as follows. In Section 2, the PAR model is in-
troduced and least squares estimators are computed. In Section 3, a robust
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estimation in the presence of outliers is developed. Section 4 illustrates the
results for the case study of the Garonne River. Section 5 offers some con-
cluding remarks.

2. Periodic models

The class of periodic autoregressive (PAR) models extends the class of
autoregressive (AR) models by allowing the autoregressive parameters to
vary with the seasons. It is worth pointing out that a PAR model is formed
by defining a different AR model for each season of the year. A PAR model
with 12 periods can be associated with 12 AR models. It should be noted
that, when the number of periods is 1, PAR model becomes AR model.

Let Y = {Yt, t ∈ Z} be a periodic autoregressive (PAR) stochastic process
given by

Yns+ν =

p(ν)∑
k=1

φk(ν)Yns+ν−k + εns+ν . (1)

For fixed ν and predetermined value s, the random variable Yns+ν represents
the realization during the νth season, with ν ∈ {1, . . . , s}, at year n, n ∈ Z.
With monthly data the value ν = 12 is naturally selected, whereas that for
quarter-monthly data ν = 48. The autoregressive model order at season ν
is given by p(ν), whereas φk(ν), k = 1, . . . , p(ν), represent the autoregressive
model coefficients during season ν, ν = 1, . . . , s. The error process ε = {εt, t ∈
Z} in equation (1) corresponds to a periodic white noise, with E(εt) = 0 and
var(εns+ν) = σ2(ν) > 0, ν = 1, . . . , s. The random process Yt in (1) is
supposed to have zero mean.

Unless otherwise stated we assume that PAR models are stationary in
the periodic sense. Periodic stationarity is discussed in Gladyshev (1961).
Typically, the periodic models used in water resources and environmental
systems are stationary, in the sense that they do not need to be differenced
to achieve stationarity (or to say it differently, data do not have unit roots).
In applications, seasonal means are first removed from the time series.

2.1. Identification and estimation for PAR models

This section summarizes without proofs the relevant material on identifica-
tion, and parameter estimation for PAR models. References that provide
detailed proofs are included in the text.
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Several estimation techniques are available for PAR models, namely the
least-square method (Franses and Paap, 2004; Lütkepohl, 2005), the method
of moments based on Yule-Walker estimation (Pagano, 1978; Hipel and McLeod,
1994) and the maximum likelihood estimation (Vecchia, 1985a,b).

Consider the time series data Yns+ν , n = 0, 1, . . . , N−1, ν = 1, . . . , s with
sample size n = Ns. Let

z(ν) =
(
Yν , Ys+ν , . . . , Y(N−1)s+ν

)>
,

e(ν) =
(
εν , εs+ν , . . . , ε(N−1)s+ν

)>
,

X(ν) =


Yν−1 Yν−2 . . . Yν−p(ν)
Ys+ν−1 Ys+ν−2 . . . Ys+ν−p(ν)

...
. . .

...
Y(N−1)s+ν−1 Y(N−1)s+ν−2 . . . Y(N−1)s+ν−p(ν)

 ,
be N × 1, N × 1 and N × p(ν) random matrices. By defining the p(ν) × 1
vector β(ν) of the parameters as:

β(ν) =
(
φ1(ν), . . . , φp(ν)(ν)

)>
, (2)

the PAR model can be written in the following form:

z(ν) = X(ν)β(ν) + e(ν), ν = 1, . . . , s. (3)

From equation (3), the least squares estimators (unconstrained and con-
strained) of β(ν) can be easily found. For more details we refer the reader
to Ursu and Turkman (2012, Section 2).

Various selection criteria using AIC or BIC can be used for PAR model
identification. One possible way is to use the BIC selection criterion sepa-
rately for each of the seasonal components:

BIC(ν) = log σ̂2(ν) +
log(N)

N
p(ν), (4)

where σ̂(ν) stands for the least squares estimators of σ(ν), and p(ν) represents
the number of autoregressive parameters in season ν (McLeod, 1994).

Even if this method reduces the number of models to be investigated,
the number of possible models remains very high. The large number of pos-
sible solutions of the PAR selection model suggests that genetic algorithms
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(GA) can be useful for an efficient examination of the space of solutions and
the selection of the combination of parameters that corresponds to the best
model. The GA combined with BIC criterion is a reliable and easy way of
identifying PAR models (Ursu and Turkman, 2012).

We briefly summarize our GA procedure for subset PAR modeling.

• String representation. Each subset AR model is encoded as a string,
each locus in the string is filled with 1 if the parameter is free, and with
0 if the parameter is constrained to zero. Since a maximum search order
has to be selected, every string has the same length L. For example, if
we take s = 12, ν = 1 and p(1) = 15, and the model

Y12n+1 = φ6(1)Y12n−5 + φ7(1)Y12n−6 + ε12n+1

then, the string representing our model is

000001100000000.

Note that in this case, the number of all possible models is 12× 215 =
393216.

• Initial population. An arbitrarily population of chromosomes of size Np

is generated. Each chromosome is encoded as a binary string of length
L as described above. The population size Np and the length of the
chromosome L are chosen by the investigator.

• A fitness function. Each chromosome is evaluated by means of a posi-
tive real-valued function called fitness function. Since the BIC(ν) may
be negative, a natural candidate for the fitness function is an exponen-
tial transformation

fj(ν) = exp {BICj(ν)/d},

where BICj(ν) stands for the BIC(ν) value for the jth chromosome
in the current population and d is a scaling constant. For yet another
appropriate fitness function we refer the reader to Gaetan (2000).

• Generating a new population. A new population of potential chromo-
somes is created, using evolutionary operators as : selection, crossover
and mutation. This cycle continues until the maximum number of gen-
erations Ng is attained, or until a stop condition is reached.

For many variations of the basic GA and detailed explanations, see Goldberg
(1989); Mitchell (1996); Sivanandam and Deepa (2008).
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2.2. Forecasting with PAR model

Forecasting with PAR models proceeds in the same way than standard
AR models. The objective is to obtain a forecast with the lowest possible
error, leading to the minimum mean squared error forecast (MMSE). The
MMSE forecast is given by its conditional expectation (Hipel and McLeod,
1994).

Assuming that observations and innovations are known up to the n-th
year and ν-th season, one takes the conditional expectation of eq. (1) to
obtain the MMSE forecast Ŷns+ν(l), where Ŷns+ν(l) is interpreted as the l-
step ahead forecast at the forecast origin t = ns+ν. For example, the 1-step
ahead forecast made at the origin t = ns+ ν is

Ŷns+ν(1) = E[Yns+ν+1|Yns+ν , Yns+ν−1, . . .]
= φ1(ν)Yns+ν + φ2(ν)Yns+ν−1 + . . .+ φp(ν)Yns+ν−p+1

The causal representation of PAR models (Ursu and Duchesne, 2009,
eqn.5) can be use to compute confidence intervals for forecasts but this is be-
yond the scope of this paper. The best general reference for confidence inter-
vals in periodic models are Hipel and McLeod (1994, chap.15) and Anderson
et al. (2013). The forecasting performance of several time series models used
in river flow analysis is presented in Noakes et al. (1985). Results suggest
that the PAR models provide the most accurate forecasts.

3. Robust modeling of PAR models

As it is well-known, estimation methods may be seriously affected in the
presence of additive outliers (Bustos and Yohai, 1986; Shao, 2007). Additive
outliers refer to a PAR process with probability 1 − ω and a PAR process
plus an error with probability ω. The occurrence of outliers is generally small
(ω ≤ 0.05).

Robust estimators based on robust autocovariances for ARMA models
were proposed by Bustos and Yohai (1986). Their methodology was extended
for multivariate PAR models by Ursu and Pereau (2014). The system of
equations obtained in Ursu and Pereau (2014, eq.(6) and eq.(9)) can be
easily adapted for PAR processes.

Therefore, in order to reduce the influence of the residuals suspected to be
outliers, we replace the residuals ε̂ns+ν defined in Section 2 by their modified
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residuals ε̃ns+ν defined as:

ε̃ns+ν = ψ

(
ε̂ns+ν
σ̂(ν)

)
, (5)

where ψ stands for an odd and bounded function and σ̂(ν) is an robust
estimator for σ(ν). An usual choice for the ψ function is the Huber function:

ψH,k(x) = sgn(x) min {|x|, k},

where k is a constant and sgn(x) is the signum function. Generally, an
iterative algorithm is proposed for ARMA models in Bustos and Yohai (1986)
and for PAR models in Ursu and Pereau (2014).

The convergence of this algorithm cannot be guaranteed, but the conver-
gence always occurred in all the simulations run in Ursu and Pereau (2014).
Other recent works on robustness in periodic time series include the esti-
mator of PAR models proposed by Sarnaglia et al. (2010). Also, a robust
estimation for PAR models was discussed in Shao (2007).

4. Case study: Garonne river

The PAR model is applied to the average monthly river flow and average
quarter-monthly river flow of the Garonne river in the southwest of France.
This river is the third largest river in France in terms of flow, with a catch-
ment area of 56, 000km2. The Garonne river flows over 647km from its source
in Spain to the Atlantic Ocean. It is the main contributor to the Gironde
Estuary which is the major European fluvial-estuarine system.

As mentioned in the introduction, the Adour-Garonne Water Agency aims
at controlling the river flow at different management points along the river.
We select measures recorded at Tonneins which is the outlet of the water-
shed. Tonneins is the latest measure point located downstream the river
before the Gironde Estuary. Data are obtained from daily discharge mea-
surements in cubic meter per second (m3/s) from January 1959 to December
2010 (DIREN-Banque Hydro, French water monitoring). Daily data flows
are then transformed in monthly data, respectively quarter-monthly data,
consisting in flows averaged for one month, respectively from the 1st to the
7th, from the 8th to the 15th, from the 16th to the 22nd, and from the 23rd
to the end of the month as in Hipel and McLeod (1994). At Tonneins, the
threshold value of the daily flow is equal to 110 m3/s. This objective is dif-
ficult to satisfy during the dry season in summer between the 1st of July to
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October 31st which corresponds to periods 25 to 40. To reach this objective
of minimal flow during the summer the Adour-Garonne Water agency uses
the water stored in reservoirs and dams located in the Pyrenees mountains.
This quantitative management of water for all the watershed implies high
financial costs. During wet years, about 40 million of m3 are needed for a
cost of 2.5 millions of e and during dry years this amounts to 58 millions of
m3 for a cost of 5 millions of e. About 90% of the 58 millions of m3 come
from reservoirs used by hydropower plants. As the water storage capacity is
limited, water saving restrictions have to implemented especially in irrigated
agriculture.

Figure 1 plots the annual flows of the Garonne river between 1959 and
2010. It shows that several episodes of severe drought occurred in 1989-1990
and in 2005. This figure also shows that annual flows remained below the
mean of 600 m3/s for several years during the last decade.

year

m
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1960 1970 1980 1990 2000 2010

20
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40
0

60
0

80
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10
00

Figure 1: Plot of average annual flows of Garonne river at Tonneins (1959-2010)

To capture the periodic pattern of river flows, average monthly and
quarter-monthly flow series are analysed. Table 1 and Table 2 show re-
spectively the sample mean, median and standard deviation for each flow
series. A partial plot of monthly and quarter-monthly surveys between 1980
and 2000 is given in Figure 2.

Figure 2 shows that a periodic fluctuation in the means and variances
is clearly displayed. For monthly data, river flows are higher in February
and much lower in August. For quarter-monthly data, most peaks occurred
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period mean median sd period mean median sd

1 927.89 854.70 493.66 7 258.06 235.60 159.46
2 984.70 876.25 477.15 8 161.63 146.85 81.52
3 824.19 810.80 321.06 9 212.13 175.10 118.54
4 840.39 808.65 331.90 10 344.47 274.75 226.29
5 798.71 756.15 320.76 11 524.22 438.10 322.96
6 527.83 482.65 249.42 12 823.28 721.80 600.96

Table 1: Sample mean, median and standard deviation of the average monthly flow series.
Period 1 corresponds to January.

period mean median sd period mean median sd

1 898.87 738.21 749.83 25 334.77 283.57 198.61
2 864.82 682.19 574.70 26 306.38 236.38 273.73
3 907.50 822.93 536.55 27 227.25 207.21 125.45
4 1022.39 911.33 639.42 28 179.41 161.72 87.35
5 1001.22 795.86 675.40 29 166.54 145.43 106.39
6 998.22 778.56 608.97 30 164.21 145.62 84.26
7 995.64 833.93 559.70 31 150.34 130.29 72.73
8 938.86 795.71 507.46 32 164.31 151.00 92.44
9 843.37 754.29 388.77 33 171.39 157.36 91.53
10 778.47 707.50 361.49 34 179.45 156.81 86.64
11 809.78 695.36 494.55 35 226.81 173.57 199.56
12 861.10 722.28 463.38 36 267.63 177.00 221.72
13 810.89 793.29 387.19 37 288.85 212.07 233.54
14 821.18 686.50 433.57 38 316.05 276.94 222.85
15 829.67 764.93 371.26 39 352.91 285.21 210.20
16 894.76 782.81 469.93 40 406.41 299.56 327.58
17 867.98 707.86 458.46 41 441.59 308.57 382.77
18 835.76 777.50 407.20 42 515.26 367.38 352.86
19 768.96 678.14 379.08 43 550.07 470.36 399.15
20 735.05 683.44 349.19 44 582.86 462.31 403.36
21 630.39 596.71 258.53 45 779.49 533.71 678.62
22 612.22 506.50 387.94 46 835.27 563.38 756.48
23 484.57 399.00 256.52 47 829.46 579.00 680.99
24 391.56 351.75 196.47 48 841.88 610.22 735.66

Table 2: Sample mean, median and standard deviation of the average quarter-monthly
flow series.
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(b) Quarter-monthly periods

Figure 2: Partial plot of average monthly and quarter-monthly flows of Garonne river at
Tonneins between 1980-2000
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during the 4th, 5th, 6th and 7th period and most troughs occurred in the
30th, 31th, 32th and 33th period. Maximum mean quarter-monthly discharge
was observed at 48th period in 1959 as 4059 m3/s, while a minimum mean
quarter-monthly discharge of 55.86 m3/s was recorded at 27th period in 2003.
The driest periods for monthly and quarter-monthly data are in August (8th
month) and in period 31 respectively while February (2nd month) and the
4th period are the wettest period for monthly and quarter monthly data.

Figures 3 and 4 display the pattern of the series over the 1959-2010 pe-
riod. For the driest periods, we observe that the 10-year moving average
has increased from about 1959 to about 1975, then it was stabilized between
1975 to 1980 followed by a decrease from 1980 to 1990. By 1990, the 10-
year moving average was around 110 m3/s and seems to remain stable. A
similar behavior is observed for the wettest periods. Changes in the average
hydrological conditions in the Garonne river flows can be explained by sev-
eral factors related to natural changes after the severe droughts of 1989-1990
or human activities with increased irrigated agriculture and urban growth.
Since the mid 1990s, the stabilization of the 10-year moving average around
the value 110 m3/s is related to the implementation of water management
policies.

Figure 5 shows how many periods the quarter-monthly flows remain below
the threshold value of 110 m3/s. Between 1959 and 2010, it occurs more
frequently during periods 28 to 33 with a maximum of 20 times for period
31.

In the unrobust case modeling, data have been centered by subtracting
seasonal means (see Tables 1 and 2). The last year (12 months or 48 obser-
vations) has been omitted from the data set. The PAR model is fitted to the
truncated series. The number of AR models used in PAR model is equal to
the number of season associated to the choice of data set. We obtain 12 AR
models with monthly data and 48 models for quarter-monthly data. Note
that with the monthly model, the number of possible models to be estimated
is approximately 4∗105 and it increases to 16∗105 with quarter-monthly data.
This large number of possible solutions suggests the use of GA techniques
to reduce the space of solutions and to select the combination of parameters
which gives the best model. For each season, the parameters for the identified
AR model are estimated using the least squares with linear constraints.

Using GA methods only 26 and 135 parameters have been estimated for
the 12 and 48 different AR models, respectively. The most complicated
model for quarter-monthly data is obtained for the 43th season where an AR
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(b) Quarter-monthly periods

Figure 3: The driest monthly (August) and quarter-monthly flows (31th period) of
Garonne river at Tonneins (1959-2010). The long term mean for August is 161.27 m3/s
and 150.34 m3/s for period 31.
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Figure 4: The wettest monthly (February) and quarter-monthly flows (4th period) of
Garonne river at Tonneins (1959-2010). The long term mean for February is 984.7 m3/s
and 1022.39 m3/s for period 4.
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Figure 5: Histogram of driest quarter-monthly flows of Garonne river at Tonneins (1959-
2010)

model with 8 parameters was identified. With monthly data, the number
of estimated parameters was 6 for the month of October1. A parsimonious
PAR model may be obtained by using a single model for all seasons in a
given group and therefore the number of parameters in a PAR models is
decreasing (Hipel and McLeod, 1994, chapter 14).

The proposed models for Garonne are then used to generate one-step-
ahead forecasts for both flow series. Figure 7 shows forecast and the observed
data for 2010. Figure 1 shows that the river flow in 2010 is about 400 m3/s
which is lower than the mean of the whole sample. It could be considered as
a dry year.

4.1. Robust modeling of river flows

There are several observations that can possible be identified as outliers in
the seasonal boxplots in Figure 6 (according to the one and half inter-quartile
range rule). Outliers appear to be more numerous in quarter-monthly flows

1The identified model associated to this month can be written as

Y12n+10 = φ̂1Y12n+9 + φ̂2Y12n+8 + φ̂3Y12n+7 + φ̂4Y12n+6 + φ̂10Y12n + φ̂11Y12n−1 + ε̂12n+10,

where φ̂1 = 1.23, φ̂2 = −2.07, φ̂3 = 1.08, φ̂6 = −0.18, φ̂10 = 0.15 and φ̂11 = −0.27.
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than in monthly flows in the wettest period (from periods 4 to 10) but also
during the driest periods (from periods 36 to 40).
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(a) Monthly flows
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(b) Quarter-monthly flows

Figure 6: Box-plots of the monthly and quarter-monthly flows of Garonne river at Tonneins

Contrary to the unrobust case, data have been centered by subtracting
the seasonal medians instead of the seasonal means. As indicated by Shao
(2007), this choice is better since outliers have smaller impact on the medians.
The robust procedure described in Section 3 is then applied. As mentioned
in Section 2, the recommended approach for identifying the AR parameters
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required in each season for the PAR model is to use genetic algorithms.
It is important to emphasize that the number of estimated parameters for
monthly and quarter-monthly data were 23 and 113 respectively. The most
complicated AR model (for one period) has 5 parameters (in November)
and 6 parameters (27th period) for the monthly and quarter-monthly data,
respectively.

The robust model for Garonne data are used to generate one-step-ahead
forecasts for the average flow series. Figure 7 shows robust forecast for 2010
and the observed data.

To evaluate the forecast accuracy for the unrobust and robust models
we compute the following measures: root mean square error (RMSE), mean
absolute error (MAE), mean percentage error (MPE) and mean absolute per-
centage error (MAPE). These measures are explicitly defined in Hyndman
and Koehler (2006). These criteria have to be interpreted only as an indi-
cation to which model perform better, but no statement can be drawn from
this comparison. To test the null hypothesis of no difference in the accuracy
of the proposed models a Wilcoxon signed rank test for paired data may be
used (Noakes et al., 1985). For another measures of forecast accuracy we
refer to Hyndman and Koehler (2006).

Monthly Quarter-monthly Agg. quarter-monthly
criterion unrobust robust unrobust robust unrobust robust
MAPE 26.847 22.543 41.755 28.082 33.666 20.947
MPE -22.366 -13.768 -34.937 -13.813 -31.004 -10.293
MAE 94.305 93.240 152.473 114.230 118.569 80.453
RMSE 126.663 119.332 193.609 151.430 153.045 100.823

Table 3: Accuracy of one-step forecasts of Garonne river flows.

Another monthly predictions can be derived from the aggregation of the
quarter-monthly predictions and obtained by taking the average over the four
periods of each month. Table 3 gives the measures RMSE, MAE, MAPE and
MPE for monthly, quarter-monthly and aggregated quarter-monthly predic-
tions. Results show that the robust model is better with respect to all four
criteria whatever the data frequency. It is important to emphasize that re-
sults are also better for the aggregated quarter-monthly predictions than the
monthly data predictions, meaning that using a quarter-monthly model may
improve monthly predictions.
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(a) Twelve-months forecast
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Figure 7: Robust forecast (dashed line) based on 51 years of Garonne river data. The
observed data (solid line) and the unrobust forecast (dotted line) are also shown. The
observed data were not use in the forecast.
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5. Conclusions

Accurate forecasting of river flows is one of the most important applica-
tions in modern hydrology, especially for the management of reservoir sys-
tems.

Based on a robust modeling approach for identification and estimation
of periodic autoregressive time series model, this paper provides an appli-
cation to the Garonne River over the 1959-2010 period. To deal with the
problem of large number of parameters that need to be estimated especially
with quarter-monthly models, an automatic method using genetic routines
has been developed. Results show that detection of outliers has been higher
with quarter-monthly flow data than monthly data, implying better robust
estimators than the least square (unrobust) estimators. Then, the forecast-
ing accuracy of unrobust and robust models were investigated for one year.
Results show that forecasts are better off in monthly and quarter-monthly
robust models. The aggregated quarter-monthly forecasts also show better
performance than the monthly forecasts in the robust analysis. The accu-
racy of the forecast analysis during the driest season is important for the river
management authorities to achieve minimal flow objectives during these pe-
riods. Future research dealing with neural networks and periodic threshold
models is expected to improve river flow fitting and forecasting.
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