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Convergence dans l’oligopole de Cournot fini avec apprentissage social et 
individuel 

 
Résumé 

La convergence vers l’équilibre de Nash dans l’oligopole de Cournot est un 
problème qui apparaît de manière récurrente dans les études économiques. Le 
développement des jeux évolutionnaires a permis l’utilisation d’un concept 
d’équilibre en adéquation avec les dynamiques d’ajustement et la stabilité 
évolutionnaire de l’équilibre de Cournot a été étudiée par plusieurs articles. Ces 
articles montrent que l’équilibre Walrasien est la seule solution 
évolutionnairement stable du jeu de Cournot. Vriend(2000) propose l’utilisation 
des algorithmes génétiques pour l’étude des dynamiques d’apprentissage et il 
obtient la convergence vers la solution de Cournot avec l’apprentissage 
individuel. Nous montrons dans cet article pourquoi l’apprentissage social 
conduit à la solution de Walras et comment l’apprentissage individuel peut 
effectivement permettre la convergence vers la solution de Cournot. De plus, ces 
résultats sont obtenus dans un cadre plus général avec une application à l’aide 
d’expériences informatiques. 

Mots-clés : Oligopole de Cournot ; Apprentissage ; Evolution ; Sélection ; 
Stabilité évolutionnaire ; Equilibre de Nash ; Algorithmes génétiques 
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Abstract 

 
Convergence to Nash equilibrium in Cournot oligopoly is a problem that recurrently 
arises as a subject of study in economics. The development of evolutionary game theory 
has provided an equilibrium concept more directly connected with adjustment dynamics 
and the evolutionary stability of the equilibria of the Cournot game has been studied by 
several articles. Several articles show that the Walrasian equilibrium is the stable 
evolutionary solution of the Cournot game. Vriend (2000) proposes to use genetic 
algorithm for studying learning dynamics in this game and obtains convergence to 
Cournot equilibrium with individual learning. We show in this article how social 
learning gives rise to Walras equilibrium and why, in a general setup, individual 
learning can effectively yield convergence to Cournot instead of Walras equilibrium. We 
illustrate these general results by computational experiments. 
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Abstract

Convergence to Nash equilibrium in Cournot oligopoly is a problem that recurrently arises as a
subject of study in economics. The development of evolutionary game theory has provided an equi-
librium concept more directly connected with adjustment dynamics and the evolutionary stability
of the equilibria of the Cournot game has been studied by several articles. Several articles show
that the Walrasian equilibrium is the stable ESS of the Cournot game. Vriend (2000) proposes
to use genetic algorithm for studying learning dynamics in this game and obtains convergence to
Cournot equilibrium with individual learning. We show in this article how social learning gives rise
to Walras equilibrium and why, in a general setup, individual learning can effectively yield conver-
gence to Cournot instead of Walras equilibrium. We illustrate these general results by computational
experiments.
JEL codes: L130; L200; D430; C630; C730.
Keywords: Cournot oligopoly; Learning; Evolution; Selection; Evolutionary stability; Nash equilib-
rium; Genetic algorithms.



1 Introduction

Convergence to Nash equilibrium in Cournot oligopoly is a problem that recurrently arises as a
subject of study in economics. Already in the 60’s, several articles in Review of Economic Studies
discussed the convergence under best reply (BR) dynamics (see for example Theocharis (1960). This
debate has concluded to the instability of BR dynamics as soon as there is three or more firms in the
oligopoly and this, under standard assumptions about demand and cost conditions.

The development of evolutionary game theory has provided an equilibrium concept more directly
connected with adjustment dynamics and the evolutionary stability of the equilibria of the Cournot
game has been studied by several articles. Vega-Redondo (1997) shows, for example, that the Wal-
rasian equilibrium (WE) is the unique stable ESS situation in a quantity competition game with a
homogenous product. The results of this literature strongly enhanced the doubts about the conver-
gence of adjustment dynamics to Cournot equilibrium (CE). At the core of this literature lay the
selection dynamics that are considered in the models. When one interprets these dynamics resulting
from the learning process of boundedly rational firms under incomplete and imperfect information
(about the demand function, the quantities of the competitors and their costs), the nature of this
learning becomes the central element.

Evolutionary stability concept is more naturally connected to social learning of firms, through
imitation of strategies and experimentation (random mutations) but it does not exclude other learning
schemes, as long as they can be formulated as selection mechanisms operating at the level of firm
population. Unfortunately, richer learning schemes tend to imply complex dynamics, and oligopoly
is more naturally formulated as a playing the field game than a pairwise matching process. The
analysis of these dynamics is very difficult under general conditions (see for example Stegeman and
Rhode (2004) for a partial tentative) and recent studies have focused on the consequences of specific
representations of firms’ learning, using computational experiments.

Vriend (2000) advanced that genetic algorithms (GA) can be used to demonstrate the “essential
difference between individual and social learning”. This article shows that a GA operating at the
firm population level yields convergence, under social learning, to the WE, while a set of GAs
each adjusting the strategies of an individual firm imply, under individual learning, the convergence
to the CE. The main mechanism that is proposed as the source of this contrasted result is the
spite effect that first appeared in evolutionary biology (see Hamilton (1970)). This effect is already
underlined by Vega-Redondo (1997) in the explanation of the main result of this article. The spite
effect corresponds to the fact that an individual can harm itself but if it even more harms others,
it can gain an evolutionary advantage. These results have recently been questioned by Arifovic and
Maaschek (forthcoming) who draw attention to the specific implementation adopted by Vriend in
terms of the mechanisms of the GA–based learning and the cost structure of firms. As a consequence,
the results on this problem are definitely puzzling and some general exploration of this question is
welcome. We propose to inquire in this article a more general analysis of the convergence to equilibria
in Cournot oligopoly.

In a first section, we study the properties of CE and WE in terms of evolutionary stability. The
second section is dedicated to the analysis of the consequences of the spite effect on the evolutionary
stability. The third section analyzes the general mechanisms that derive GA-based learning and their
consequences on the outcomes of social and individual learning. We show why social learning can
not yield convergence to CE and why individual learning can under some important conditions. The
last section concludes the article.
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2 Evolutionary stability and Nash equilibria in oligopoly

2.1 A simple oligopoly model

We consider a standard symmetrical n−firms oligopoly model of quantity competition where all firms
produce a homogenous product. The inverse demand function for this good is given by p = p (Q) ,
where Q =

∑n
i=1 qi and dp/dQ < 0. The common cost function of the firms is C (qi) , with C ′ > 0

and C ′′ > 0. The profit function of a firm is hence standard: πi(qi, . . . , qn) = p(Q)qi − C(qi). Since
the interaction between the strategies of the firms only takes place through the common inverse
demand function (and hence, through the sum of these quantities), a quantity profile (q1, . . . , qn) can
be represented, from the point of view of a firm i, as (qi, Q−i) , where Q−i =

∑
j 6=i qj .

In this oligopoly two different kinds of equilibria can be defined: the Cournot–Nash equilibrium
(CE) and the Walrasian equilibrium (WE).

Definition 1. A Cournot–Nash equilibrium (CE) is given by a quantity profile qC and a market
price pC such as

1. Each firm maximizes its profit at this equilibrium

qC
i = argmaxqiπi

(
q i, Q

C
−i

)
⇒ p

(
QC
)

+ qC
i p′

(
QC
)

= C ′ (qC
i

)
, ∀i = 1, . . . n (1)

2. The market clears: pC = p
(
QC
)
.

Definition 2. A Walrasian equilibrium (WE) is given by a quantity profile qW and a market price
pW such as

1. Each firm uses a marginal cost pricing (it is a price-taker)

qW
i = argmaxqiπi

(
q i; pW

)
⇒ C ′ (qW

i

)
= pW , ∀i = 1, . . . n (2)

2. The market clears : pW = p
(
QW

)
.

Since dp/dQ < 0 and C
′′

> 0, the conditions (1) and (2) imply the standard results on the
comparison of this equilibria:

qC
i ≤ qW

i ,∀i (3)

⇒ QC ≤ QW and pC ≥ pW (4)

πC
i = πi

(
qC
i , QC

−i

)
≥ πi

(
qW
i , QW

−i

)
= πW

i ,∀i (5)

As a consequence, the Cournot equilibrium is preferred by each firm and the consumer’s surplus
is maximal in the Walrasian equilibrium. The possibility that, under some selection dynamics, an
oligopoly where each individual firm is profit maximizer can nevertheless converge to WE instead of
CE is hence quite a paradoxical result that explains why this debate has been continuing for such a
long time in economics. This paradoxical result is established through the analysis of the evolutionary
stability of these equilibria.

2.2 Evolutionary stability of equilibria

In standard evolutionary game theory, the selection dynamics are studied through symmetric pairwise
interactions within a large population of players. A strategy is an evolutionary stable strategy (ESS)
if, once adopted by the whole population, it cannot be invaded by a small mass of mutants (Maynard-
Smith (1982), Weibull (1995)). Or, following the traditional definition (Weibull 2006):
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Definition 3. A strategy profile q∗ is said to be evolutionary stable (ESS) if and only if it meets the
following conditions:

πi(qi, Q
∗
−i) ≤ πi(q∗i , Q

∗
−i),∀qi,∀i (6)

πi(qi, Q
∗
−i) = πi(q∗i , Q

∗
−i)⇒ πi(qi, Q−i) < πi(q∗i , Q−i) (7)

It is clear that the conditions (6, 7) implies that all ESS is a Nash equilibrium strategy but all
NE strategy is not necessarily ESS..
This definition, while considering random, pairwise contests between individuals drawn from a large
population, is obtained by assuming that both the predominant player (e.g. strategy) and the mutant
confront the same population profile. In a finite population game, as already noticed by Riley (1978),
a strategy which satisfies the previous conditions (6− 7) , may not be protected against invasion by
a mutant strategy. In order to analyze an oligopoly situation, we need, as showed by Alós-Ferrer
and Ania (2005), a definition of an ESS for a finite population of players which ”play the field”, that
is all compete with each other simultaneously. Schaffer (1988) arrives to the same conclusion and
proposes a concept of finite population ESS which is defined as follows1

Definition 4. In a finite population game, a strategy profile q∗ is said to be evolutionary stable if,
in the presence a mutant firm j playing qm

j 6= q∗j

πi(q∗i , q
m
j , Q∗

−i−j) ≥ πj(qm
j , Q∗

−j),∀i 6= j, ∀qm
j 6= q∗j (8)

where Q∗
−i−j =

{
q∗1, . . . , q

∗
i−1, q

∗
i+1, . . . , q

∗
j−1, q

∗
j+1, . . . , q

∗
n

}
.

In our oligopoly game, this definition means that the profit of the firm i must be higher if she
faces a mutant that plays qm than if she was the mutant.

2.3 ESS and Nash equilibrium

As shown by Schaffer (1988), a finite population ESS is not generally a Nash equilibrium strategy.
To see this, one should notice that the condition (8) does not exclude the possibility that

∃j, πj(qm
j , Q∗

−j) ≥ πj(q∗j , Q
∗
−j),∀qm

j (9)

Indeed, the meaning of condition (8) together with condition (9) is as follows: even if an individual
firm has a net benefit by moving from the current equilibrium, the other firms will necessarily
imitate it, and the population cannot be invaded by the mutant strategy. As a consequence the
current equilibrium strategy is ESS.

A direct consequence of this result implies the paradox we have underlined in the preceding
paragraph:

Proposition 1. (Schaffer (1989), Vega-Redondo (1997)) In a finite population oligopoly game, the
only ESS is the Walrasian equilibrium strategy.

The next section will analyze the mechanisms which are behind this result.

3 Evolutionary stability of equilibria and the spite effect

The mechanism which pushes the population towards the Walrasian equilibrium is well known in the
evolutionary literature:

1Sloth and Witta Jacobson (2006) define in a similar way the concept of Darwinian equilibrium.
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“[...] a firm maximising its own profit may help its non-maximising competitors to do
even better. Put another way, a firm which does not maximise its profit may still earn
profits which are larger than those of its profit-maximising competitors, if the costs to
itself of its deviation from maximisation are smaller than the costs it imposes on the
maximising competitors. [...]This result is a consequence of the Darwinian definition of
economic natural selection, whereby it is the fittest firms which survive. The above result
is essentially an application to economics of Hamilton’s theory of spite in evolutionary
biology [Hamilton (1970.1971)]. An act by an animal is spiteful if the animal harms
both itself and another. Hamilton demonstrated that such a trait could be selected for
if the population was not very large. The condition for the selection of a spiteful trait is
that the decrease in an animal’s own Darwinian fitness is smaller than the decrease in the
fitness of the average member of the rest of the population; since the holder of the spiteful
trait thus has a higher fitness than that of his intraspecies competitors, the trait will be
selected for. [...]This result is directly analogous to the spitefulness of the evolutionary
biology ESS in finite populations [...]”
Mark E. Schaffer (1989)

Strictly speaking, the spite effect is the opposite of altruism. We should used the terms of spite
effect only when the mutant firm j suffers from deviation (∆πj < 0) but it suffers less than the non
mutant firms (∆πi < ∆πj < 0,∀i 6= j). By analogy, in the positive direction, we may reinterpret
this effect as the fact that the net gain of the mutant (∆πj > 0) is greater than the net gain of the
non mutant firms (∆πj > ∆πi) which is always true of course if the non mutants suffer from the
deviations (∆πi < 0). Thus we have the following definition.

Definition 5. In a finite population oligopoly game, given that a firm j will deviate from an equilib-
rium strategy, a spite effect exists when ∆πi −∆πj < 0, i 6= j.

The relationship between Nash equilibrium strategy, ESS and spite effect is straightforward.

3.1 Nash equilibrium and ESS in a finite population oligopoly game

Definition 6. A strategy QN = (qN
1 , qN

2 , ..., qN
n ) is a strict Nash equilibrium if

πi(qN
i , QN

−i) > πi(qi, Q
N
−i),∀qi 6= qN (10)

Proposition 2. In a symmetric finite population oligopoly game, a strict Nash equilibrium strategy
is an ESS if a spite effect does not exists.

Proof.
Assume that we have a strict Nash equilibrium, qN :

πi(qN
i , QN

−i) > πi(qi, Q
N
−i),∀qi 6= qN (11)

Recall that the spite effect does not hold if ∆πi −∆πj > 0, that is if:(
πi(qj , Q

N
−j)− πi(qN

j , QN
−j)
)
−
(
πj(qj , Q

N
−j)− π(qN

j , QN
−j)
)︸ ︷︷ ︸

<0 by inequality ( 11)

> 0

which means that a sufficient condition is:

∆πi ≡ πi(qj , Q
N
−j)− πi(qN

j , QN
−j) > 0,∀qj 6= qN

j
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It is easy to check that, since, by symmetry, πi(qN
j , QN

−j) = πj(qN
j , QN

−j), the last condition implies
that πi(qj , Q

N
−j) > πj(qN

j , QN
−j). And, by definition of the strict Nash equilibrium, we get the second

part of the following condition

πi(qj , Q
N
−j) > πj(qN

j , QN
−j) > πj(qj , Q

N
−j)

which thus establishes the ESS condition (8). So, if the spite effect does not occur, the symmetric
Nash equilibrium strategy is an ESS. �

3.1.1 One single mutation case

Proposition 3. In a finite population symmetric oligopoly game, with one possible single mutation,
a strategy profile q̂ = (q̂1, ..., q̂n) is an ESS, and no spite effect occurs, if

dqi

(
p′dqi + p− C ′) < 0,∀i (12)

Proof.
At q̂ the profits of the firms are

πj(q̂) = p(q̂)q̂j − C(q̂j) (13)
πi(q̂) = p(q̂)q̂i − C(q̂i) (14)

A deviation of the firm j from the equilibrium, qj 6= q̂j , yields a new strategy profile qm =
{q̂1, q̂2, .., q̂j−1, qj , q̂j+1, ..., q̂n) and the following profits:

πj(qm) = p(qm)qj − C(qj) (15)
πi(qm) = p(qm)q̂i − C(q̂i),∀i (16)

The deviation will not be imitated if, with this new strategy profile qm, the mutant firm j earns a
lower profit than the non mutant firms, that is if

πj(qm)− πi(qm) < 0
⇔ πj(qm)− πj(q̂)− πi(qm) + πi(q̂) < 0

⇔ ∆πi −∆π−i < 0

since by the symmetry of the initial equilibrium we have πi(q̂) = πj(q̂i).
The net gain of firm j, ∆πj corresponds to (15)− (13):

∆πj = πj(qm)− πj(q̂)
= [p(qm)qi − (p(q̂)q̂i]− [C(qi)− C(q̂i)]

For a local deviation, qj = q̂j + dqj we can compute the marginal net gain:

∆πj =
[
p(q̂j + dqj , Q̂−j)(q̂j + dqj)− p(q̂)q̂j

]
− [Cj(q̂j + dqj)− Cj(q̂j)] (17)

=
[
p(q̂j + dqj , Q̂−j)− p(q̂)

]
q̂j︸ ︷︷ ︸

q̂jdp

+
[
p(q̂j + dqj , Q̂−j)− p(q̂, Q̂−j) + p(q̂)

]
dqj︸ ︷︷ ︸

dpdqj+p̂dqj

(18)

− [Cj(q̂j + dqj)− Cj(q̂j)]︸ ︷︷ ︸
dCj

(19)

with p̂ = p (q̂) . For any other firm i 6= j we have:

∆πi = πi(q̂j + dqj , Q̂−j)− πi(q̂)

=
(
p(q̂j + dqj , Q̂−j)− p(q̂)

)
q̂i︸ ︷︷ ︸

q̂idp

(20)
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And consequently:

∆πj −∆πi < 0 (21)
=⇒q̂jdp + dpdqj + p̂dqj − dCj − q̂idp < 0
=⇒dp(q̂j − q̂i) + dpdqj + p̂dqj − dCj < 0 (22)
=⇒dpdqj + p̂dqj − dCj < 0 since q̂j = q̂i (23)

Since dp = p′dqj and dCj = C ′dqj ,

p′dqjdqj + p̂dqj − C ′dqj < 0 (24)
dqj

(
p′dqj + p̂− C ′) < 0 (25)

�
Before discussing more in detail in the next section the implications of learning with genetic

algorithms, we can already establish a first general result concerning social learning in the finite
oligopoly game.

Proposition 4. With imitation-based social learning, the strategies that imply a deviation from the
WE will be eliminated while the strategies that imply a deviation from the CE in the direction of the
WE can diffuse in the population.

Proof.
Local (infinitesimal) deviation from the WE. At the WE we have p̂ = pw = C ′ and the condition for
stability (25) becomes p′(dqj)2 < 0.

• dqj < 0: Since p′ < 0, the condition (25) holds. A firm that deviates alone by decreasing its
quantity will benefit, via a price increase, from a revenue increase lower that the one it will offer
to the firms who stay committed. So, the mutant strategy will not be replicated by imitation
and the Walrasian strategy will persist.

• dqj > 0: The firm who increases its quantity will decrease the market price to a level such that
the profit of every firm will decrease. But the loss of the mutant firm will be higher than the
loss of the firms continuing to stick to the Walrasian strategy. Thus, this mutant strategy will
again not be replicated in the population.

Local deviation from CE. Remark that at the CE we have, by definition, an equality between
marginal revenue and marginal cost. This last condition means that p′jq

CE
j + pCE − C ′ = 0. If

the deviation is local, we must have |dqj | < qCE
j , then |p′dqj | < |p′qj | with p′ < 0. Therefore the

following results hold:

• dqj > 0 : Since pCE − C ′ > 0, p′jq
CE
j + pCE − C ′ = 0 and p′dqj < p′qCE

j (since |dqj | < qCE
j )

we necessarily have p′dqj + pCE − C ′ > 0. As a consequence, the condition 12 does not hold
and a spite effect is not observed. If one firm leaves the CE by increasing its quantity, it will
decrease its profits but this decrease will be less than the reduction of the other firms profits.
This strategy will be replicated and the deviation from CE will diffuse in the population.

• dqj < 0: In this case, we have p′dqj > 0 > p′qCE
j and dqj(p′dqj + pCE − C ′) < 0. Thus, no one

should imitate a strategy that move away from the CE by decreasing again the quantity. That
is, if one firm decreases its quantity from CE, it will earn less supplementary profits than the
other firms. As a consequence, this strategy will not be replicated in the population.

�
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3.1.2 Generalization to m identical mutants

Identical mutants
Assume now that m firms play a strategy qj = q while the other n −m firms stay committed to

the initial equilibrium strategy q∗.

Definition 7. In a finite population game with m mutations, an equilibrium strategy (q∗1, q
∗
2, .., q

∗
n),

with q∗i = q∗,∀i, is a strong ESS if, ∀qj 6= q∗,

πim(qj , Q−jm) > πjm(qj , Qjm)

with Qjm ≡ (m− 1)qj + (n−m)q∗, jm any mutant firm and im any non mutant firm.

This means that if m firms plays qj 6= q∗, the profits of these m firms should be lower than the
profits of the n −m firms that stayed committed to q∗. From this remark, Schaffer (1988) defines
the concept of m− stable (finite population) ESS as follows.

Definition 8. An equilibrium strategy (q∗1, q
∗
2, .., q

∗
n) is called an m-stable (finite population) ESS if

πi(Qm̂) > πj(Qm̂) and πi(Qm+1) < πj(Qm+1)

with 1 ≤ m̂ ≤ m, and with Qm̂ ≡ m̂qj + (n− m̂)q∗ and Qm+1 ≡ (m + 1)qi + (n− (m + 1))q∗.

The m-stable ESS means that as long as the number of the mutants is less than or equal to m
the initial equilibrium strategy is an ESS one. But if the number of mutants increases above m, this
is no more the case.

Proposition 5. In a finite population oligopoly game, if a strategy profile q∗ = (q∗1, q
∗
2, ..., q

∗
n), does

not yield a spite effect for at least one firm, it is an ESS equilibrium whatever is the number of
mutants.

Proof.
With the m simultaneous mutants belonging to Im, the set of mutant firms, the profits are, with
Qm = (m− 1)q̂ + (n−m)q∗, and with qj = q̂,∀j ∈ Im and qi = q∗i = q∗,∀i /∈ Im

For any mutant firm: πj(Qm) = p(Qm)q̂ − Ci(q̂) (26)
For any non mutant firm: πi(Qm) = p(Qm)q∗ − C(q∗) (27)

It is clear that the ∆πj are equivalent between all mutant firms and ∆πi, between all non mutant
firms. If the spite effect holds for at least one non mutant firm then it holds for all non mutant firms.
As a consequence, the initial strategy profile is an ESS. �

Corollary 1. The Walrasian equilibrium strategy is an m-stable ESS, ∀m < n− 1.

Proof.
Since the firms are identical, the oligopoly game with a n firms and with m mutants is equivalent to
a 2–players game with one single mutant. And thus, if the Walrasian equilibrium is an ESS with one
single mutant for any finite population size n, it is an m stable ESS with m identical mutants. �

Non-invadable and invading strategies
As noticed by Alós-Ferrer and Ania (2006), one can reinterpret the ESS (i.e. 1–stable ESS) and

the (n− 1)–stable ESS as, respectively, an non-invadable strategy and invading strategy.
First, if a strategy q∗ is an ESS, no matter what the mutation strategy is, the mutant will always
find itself earning lower payoffs than the rest of the population. As a consequence, this mutation
should disappear. So, the (1–stable) ESS is a non-invadable strategy.
Second, if a strategy is (n− 1)–stable ESS, then, whenever the whole population but one agent
mutate to another strategy, the non-mutant player will earn larger payoffs than the mutants. It is
possible to reinterpret the previous result by saying that the non-mutant player was the mutant one.
Since its strategy is the best one, it will invade the rest of the population: the (n − 1)–stable ESS
becomes an invading strategy.
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Heterogeneous mutants with heterogeneous deviations
Let assume now that there exists m heterogeneous mutants. In our oligopoly game, this means

that some of the firms will increase their quantities while some others will decrease it. In such a
framework, the firms that do not move will have an evolutionary stable strategy if, at least, they can
get higher profits than the best of the mutants. So, the following definition holds.

Definition 9. An equilibrium strategy (q∗1, q
∗
2, .., q

∗
n) is an ESS with m heterogeneous mutants belong-

ing to im if, for ∀qj 6= q∗, j ∈ im,∀qi = q∗,and q̂ a strategy profile composed of m mutant strategies
qj and n−m equilibrium strategies q∗

πi(q̂) > max
j∈im

πj(q̂)

This definition means that whatever are the quantities that the mutants will choose, and what-
ever is the new total quantity, the non mutant firms must obtain a higher profit than any mutant
firms. Otherwise, at least one mutation will be optimal to imitate and it will diffuse.
As observed by Schaffer (1989), a strategy profile may be m–stable with homogeneous mutants (e.g.
mutations in the same direction) but unstable with heterogeneous mutations.

Learning process of the firms in Cournot oligopoly will generally imply simultaneous heterogenous
mutations. We now consider the consequences of these mutations in the context of the debate on
individual v.s. social learning with genetic algorithms.

3.2 Spite effect and importance of relative payoffs

As observed by Schaffer (1989), there is a relationship between the finite population ESS concept
and the ”beat the average” game. Obviously, a strategy is an ESS if it is not possible to increase its
relative payoff by individual mutation, which means that it is a Nash equilibrium of the ”beat the
average” game reformulation of the initial oligopoly game.

Let define the function of a firm i by the difference of the firm’s profit and the population average
profit:

πR
i (qi, Q−i) ≡ πi(qi, Q−i)−

1
n

n∑
j=1

πj(qj , Q−j)

In an initial symmetrical configuration2 (πj = π,∀j), we must have πR
i (qi, Q−i) =

(n− 1)
n

πi(qi, Q−i)−

π−i, with π−i =
(n− 1)

n
π, with πj(qj , Q−j) = π ∀j 6= i.

Proposition 6. If q∗ is not ESS, than there exists at least one mutant strategy q̂j such that the
relative profits of the mutant firms is increasing.

Proof.
We know that q∗ is not an (symmetrical) ESS if

πj(q̂j , Q
∗
−j)− πi(q̂j , Q

∗
−j) > 0

Since the non mutant firms are symmetric we have from (8)

n− 1
n

(
πj(q̂j , Q

∗
−j)− πi(q̂j , Q

∗
−j)
)

> 0

πj(q̂j , Q−j)
(n− 1)

n
− (n− 1)

n
π > 0

πR
j (q̂j , Q−j) > 0

2For a non homogenous initial situation, the proposition can be trivially proved by considering a deviation consisting
in the imitation of the best strategy.
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That is the new relative profits is positive. Since we start from an initial equilibrium where initially
πR(q∗j , Q

∗
−j) = 0, the relative profit of the mutant firm does increase. �

Another implication of this proposition can be formulated using the fitness concept that we will
use later in this article:

fi =
πi(qi, Q−i)∑n

j=1(πj(qj , Q−j))
=

πi(qi, Q−i)
πi(qi, Q−i) + Π−i

.

where Π−i =
∑

k 6=i πj(qi, Q−i). The fitness measure is used in most biology evolution game as the
base of the selection process in a given population.

Corollary 2. If q∗ is not an ESS, there exists at least one strategy q̂i such that the fitness of the
firm is increasing.

Proof.
First note that Π−i = (n− 1)π−i = (n− 1) π. From the previous proof we know that

πj(q̂j , Q−j)
(n− 1)

n
− (n− 1)

n
π > 0

πj(q̂j , Q−j)(n− 1)− (n− 1)π > 0
nπj(q̂j , Q−j) > πj(q̂j , Q−j) + Π−i

πj(q̂j , Q−j)
πj(q̂j , Q−j) + Π−i

>
1
n

Since initially the fitness is

fi =
πi

πi + Π−i
=

π

nπ
=

1
n

Then the fitness of the mutant firm increases. �

3.2.1 ESS, variation of profits and spite effect

The ESS is hence related to the variation of the relative profits, but it can also formulated in terms
of variation of profits. Let ∆πj = πj(q̂j , Q

∗
−j)− πj(q∗j , Q

∗
−j) be the net evolution of the profit of the

mutant firm j who decides to produce a quantity q̂j rather than an equilibrium quantity q∗j . For
the each of the non-mutant firms (i 6= j), the evolution of profit is given by ∆πi = πi(q̂j , Q

∗
−j) −

πi(q∗j , Q
∗
−j). Since, πj(q∗j , Q

∗
−j) = πi(q∗j , Q

∗
−j) in a symmetrical equilibrium, the following definition

is directly related to definition 4.

Definition 10. In a finite population game, a strategy q∗ = {q∗1, q∗2, ...q∗j , ...q∗n} is said to be evolu-
tionary stable if, for any strategy q̂j 6= q∗j ,

∆πi −∆πj ≥ 0

This means that the net gain (or loss if ∆πj < 0) of the mutant firm must be lower (greater)
than the net gain (or loss if ∆πi < 0) of the non mutant firms. The situation where the variation of
profits is negative is directly related to the spite effect.
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procedure evolution program
begin

t← 0
(1) initialize P (t)
(2) evaluate P (t)
while (not termination–condition) do
begin

t← t + 1
(3) select P (t)from P (t− 1)
(4) alter P (t)
(5) evaluate P (t)

end
end

Figure 1: The structure of an evolutionary program (Michalewicz, 1996)

4 Learning, selection and convergence to equilibria

If we allow firms to adapt their production levels as a consequence of learning, this adaptation will
imply a specific selection mechanism in the evolution of their strategies. The recent debate on the
convergence to CE with learning firms (see Vriend (2000), Arifovic and Maaschek (forthcoming)) has
focused on learning with genetic algorithms (GA).

A GA is based on mechanisms inspired by biological evolution: selection, crossover and mutation
(see Figure 1). The canonical genetic algorithm makes evolve a population of chromosomes. The
size of the population m is given. It is the source of one of the strengths of the GA: implicit
parallelism (the exploration of the solution space using several candidates in parallel). The population
of chromosomes at step t (a generation) is denoted P (t) = {Aj}t with #P (t) = m, and ∀t = 1, 2...T
with T the given total number of generations. Notice that T is the other source of the strengths of
the GA. The algorithm (randomly) generates an initial population P (0) of candidate chromosomes
which are evaluated at each period using the fitness (value) function. They are used for composing a
new population at the next period P (t + 1). Each chromosome has a probability of being selected
that is increasing in its fitness. The members included in the new population are recombined using a
crossover mechanism (see Figure ??). The crossover operation introduces controlled innovations in
the population since it combines the candidates already selected in order to invent new candidates
with a potentially better fitness. Moreover, the mutation operator randomly modifies the candidates
and introduces some random experimenting in order to more extensively explore the state space and
escape local optima. Typically, the probability of mutation is rather low in comparison with the
probability of crossover because otherwise the disruption introduced by excessive mutations can
destruct the hill-climbing capacity of the population. Finally, an elitism operator can be used which
ensures that the best individual of a population will be carried to the next generation.

The GA is used to represent the learning capacity of the firms, since it can make evolve a
population of production levels on the base of a fitness based on the profits resulting from these
quantities. Vriend (2000) confronts two different implementations of this approach and claims that
this confrontation can prove an essential difference between social and individual learning. In the case
of social learning, the population of strategies that evolve through GA contains one strategy by firm
and the operations of the GA correspond to the imitation between firms (crossover) and to random
experimenting by some firms (mutations). In the case of individual learning, the GA operates on
the individual strategy population of each firm (we have as many GAs as firms in the economy) and
the operations of the GA correspond to recombination of strategies already found (crossover) and
random experimenting in the strategy population of the firm (mutation).

By confronting these two different approaches to learning by GA, Vriend (2000) obtains a conver-
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gence to WE under social learning and to CE, under individual learning. Arifovic and Maaschek (forth-
coming) question these results. Our preceding discussion would indicate that the results of Vriend (2000)
are robust even if they are obtained in this article under very specific demand and cost conditions,
and with a very specific application of the GA methodology. We will now explore the general mech-
anisms that lay behind these different results in the literature. Our analysis will be focused on the
main operator in the evolution of the population: the fitness based selection. This focalization will
also allow us to connect the results on learning with the general results we have obtained in the
preceding sections.

In any population of strategies, the convergence to WE will occur in general if the selection
mechanism favours strategies with higher quantities when the market outcome is below the WE
and the strategies with lower quantities when the market is above the WE. Since the selection is
based on the relative fitness of the strategies (whatever is the particular definition of this fitness),
this condition is equivalent to a necessarily increasing relationship between the relative fitness of the
strategies and quantities below the WE and a decreasing relationship above the WE.

Definition 11. If we note by Fj the fitness of a strategy in the population of strategies, its relative
fitness will be given by

fj =
Fj∑
j Fj

(28)

In the context of the oligopoly, we will in general have a fitness function that will be positively

related to the profit of the firm: fj = f

(
πj
+

)
. In the simplest case, and the articles we cite use this

formulation, the profit will directly correspond to the fitness of the strategy. As a consequence, if
the share of a strategy j in the population is noted by λj , the population of strategies will only be
invaded by Walrasian strategies if we have the following correlation

corr(λj , qj)


> 0 if qj ≤ qW

< 0 if qj > qW

0 if qj = qW

In the case of the standard genetic algorithm, the selection operates through a roulette wheel process
where the probability of reproduction of a strategy in the population is given by its relative fitness.
In the case of the oligopoly, this fitness is related to the profits of the firms and the way these profits
are compared is an essential difference between social and individual learning.

4.1 Social learning

In the case of the social learning, each strategy is played by a specific firm and the probability of
the survival of a strategy results from the comparison of the profit of the firm that uses this strategy
with the profits of the other firms

fi =
πi(qi, Q−i)∑n
i=1 πi(qi, Q−i)

when firm i is the user of the strategy j. If we note Π−i ≡
∑

k 6=i πk(qi, Q−i), we can note this relative
fitness as

fi =
πi(qi, Q−i)

Π−i + πi(qi, Q−i)

11



This relative fitness depends on the quantity corresponding to the strategy of the firm i in the
following way

∂fi

∂qi
=

∂πi

∂qi
(Π−i + πi)− πi(

∂Π−i

∂qi
+

∂πi

∂qi
)

(Π−i + πi(qi, q−i))2

∂fi

∂qi
=

∂πi

∂qi
Π−i − πi

∂Π−i

∂qi

(Π−i + πi)2
(29)

As a consequence, we observe

sgn

(
∂fi

∂qi

)
= sgn

(
∂πi

∂qi
Π−i − πi

∂Π−i

∂qi

)
. (30)

This relative fitness will be favorable to higher quantities in a way to push the population towards
the WE iff

∂πi

∂qi
Π−i > πi

∂Π−i

∂qi

⇔ qi

πi

∂πi

∂qi
>

qi

Π−i

∂Π−i

∂qi

⇔ επi,qi > εΠ−i,qi (31)

where εy,x represents the elasticity of y with x. As a consequence, the tendency towards the WE
equilibrium will depend in this case on the comparison of the impact of the quantity increase of the
firm on its profit with the same impact on the total profits of its competitors. If the these impacts
are positive, the increase of the quantity of the firm i will increase its probability to survive, if and
only if, the impact on its own profit is greater than the impact of the other firms total profit. If these
impacts are negative on the contrary, this condition is of course directly related to the spite effect:
A firm that will move from a CE quantity may decrease its profit (ε(Πi,qi) < 0) but it will even more
decrease the competitors profits ( 0 > ε(Πi,qi) > ε(Π−i,qi)

) and it will increase its relative fitness. We
must distinguish two cases in the evaluation of these impacts.

4.1.1 Infinite population of firms

When the population of the firms is large, we have, by the atomistic property, that the variation
of the quantity of one particular firm i does not significantly modify neither the market price nor
the profits of the competitors: ∂p(qi, Q−i)/∂qi = 0 and ∂Π−i/∂qi = 0. This of course considerably
simplifies the evaluation of the terms of the equation (31):

επi,qi > εΠ−i,qi = 0

and

επi,qi =
qi

πi

[
p(qi, Q−i)−

∂p(qi, Q−i)
∂qi

qi −
dC

dqi

]
=

qi

πi

(
p− C ′)

which implies, if πi > 0, qi > 0

επi,qi


> 0 if qi ≤ qW

< 0 if qi > qW

= 0 if qi = qW

since qW is the Walrasian strategy and it verifies, by definition, p − C ′ = 0. We hence observe that
increasing quantities will diffuse in the population when the actual outcome is below the WE and
their fitness will play against their reproduction when the industry is above of this equilibrium. This
is the main mechanism that pushes the industry towards the WE instead of the CE.

12



4.1.2 Finite population of firms

In a finite population, the atomistic property is not assured. As a consequence, we can have
∂p(qi, Q−i)/∂qi < 0 and ∂Π−i/∂qi 6= 0. If we consider the last derivative

∂Π−i

∂qi
=

∂(
∑

j 6=i(pqj − C(qj))
∂qi

=
∑
j 6=i

(
∂p

∂qi
qj) =

∂p

∂qi

∑
j 6=i

qj =
∂p

∂qi
Q−i

= p
′
Q−i (32)

since dCj/dqi = 0 and ∂p/∂qi = ∂p/∂Q× ∂Q/∂qi = ∂p/∂Q = p
′
. We can also compute

∂πi

∂qi
= p

′
qi + p− C ′

As a consequence, the equation (30) becomes

sgn

(
∂fi

∂qi

)
= sgn

(
(p

′
qi + p− C ′)Π−i − p

′
Q−iπi

)
(33)

= sgn
(
(p− C ′)Π−i + p

′
(qiΠ−i −Q−iπi)

)
(34)

The first term shows that the impact of an increase of its quantity depends on the position of the
firm in terms of marginal cost and price (in a similar way to the infinite population case). But it
also depends, in a more complicated way, on the relative quantities and profits of the firms, in a
way not disconnected from the spite effect. We can note that the last effect in this equation can be
reformulated:

qiΠ−i −Q−iπi = qiΠ−i + qiπi − qiπi −Q−iπi

= qiΠ−QΠi

⇒ sgn
(
p
′
(qiΠ−i −Q−iπi)

)
= −sgn

(
qi

Q
− πi

Π

)
since p′ < 0. Hence, when Π > 0, this effect will favour increasing quantities if the market share of
the firm is lower than its profit share. As a consequence, if we have Π−i > 0 and Π > 0,

∂fi

∂qi


> 0 iff πi > 0, qi < qW ,

qi

Q
<

πi

Π
≤ 0 iff πi < 0, qC

i < qi < qW

= 0 iff qi = qW

since p
′
qi + p− C ′ < 0 in equation (33) if qC

i < qi, and p = C ′, qi/Q = πi/Π if qi = qW ,∀i.
As a consequence, the strategies will advance towards the WE if the firms can obtain positive

profits at the neighborhood of WE.

4.2 Individual learning

When the learning of the firms is individual, the firms can not count on their interactions on the
market for directly learning the strategies from the competitors (imitation). Each firm must extract
information on the relevance of its actual strategy from the global market variables that result from
the interactions of the firms (mainly, the market price) that it can observe, and from the profit it
obtains with its strategy under these market conditions.
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As a consequence, when the learning dynamics are not based on imitation, the spite effect cannot
directly play. The main question again is the consequences of these dynamics in terms of convergence
to equilibrium. Since convergence to WE with social learning is general, the capability of such a
learning to allow the emergence of a CE becomes the main controversial point in this approach. This
capability will strongly depend on the kind of information on which the firm can count during its
learning process.

As Alós-Ferrer (2005) summarizes it: ”The intuition is that if firms remember past profits, desta-
bilizing Cournot will not be such an easy task. After a single mutation [...], the mutant may earn more
than the nonmutants, but the largest profit remembered will still be that of the Cournot equilibrium,
and hence, the mutant will ’correct the mistake’, even in absence of any strategic considerations.”

Riechmann(2006), on the other hand, suggests that ”if agents do not know or simply neglect the
state dependent nature of the problem, i.e. the fact that they do have an influence on the market
price, the outcome of individual learning will be the Walras equilibrium. The reason for this is
straightforward: If agents do not think or do not know they can influence the market price, the best
thing they can do is to compute a best response to last period’s equilibrium price”.

In this context, the learning of the agents is based on the comparison of performances of different
strategies inside each firm, while the competition will imply an interaction at the market level between
the selected strategies in each period. As a consequence, the concepts of convergence and stability
become more intricate. A quantity profile q∗ will only be stable at the market level if and only if
every firm plays (selects) the corresponding equilibrium strategy and if the learning process of the
firm has effectively converged to this strategy.

Models of individual learning necessarily introduce dynamics for the evolution of the individual
strategies. In the discussion above we have deliberately focused on a population based approach,
in line with the recent literature on this debate. Effectively, Vriend (2000), Arifovic and Maaschek
(forthcoming), and other articles, discuss the convergence problem with a representation of strategy
evolution based on different formulations with genetic algorithms. Two contrasted approaches have
been used in this formulation: learning with profit expectations based on the actual market price
used for evaluating (through hypothetical profits) the population of strategies in each period, and
learning without expectations, evaluating one strategy in each period. Other intermediate cases have
also been considered, like in Vriend (2000) where the GA does not intervene in each period. When
this is relevant, we will also point to more traditional learning schemes based on best replies.

4.2.1 Individual learning with hypothetical profits

In this case, firms use expectations based on the last period price for evaluating the fitness of each
strategy in their population. This hypothetical profit determines the relative fitness of each strategy
and guides the selection process. The main algorithm of this game can be summarized as a simple
pseudocode if the oligopoly game has a duration of T periods (see Figure 2).

Notice that each strategy is evaluated, in each period t, using a same given price pt−1. Thus,
with the roulette wheel selection, the fitness of a given strategy j of the player i would result from:

fij =
πi(qij , p

t−1)∑k
j=1 πi(qij , pt−1)

=
πi(qij , p

t−1)

πi(qij , pt−1) +
∑k

l=1,l 6=j πi(qi,l, pt−1)

=
πi(qij , p

t−1)
πi(qij , pt−1) + Πi,−j

where Πi,−j =
∑k

l=1,l 6=j πi(qi,l, p
t−1).
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• Period 0: a population of k strategies, qij ∈ q0
i , is drawn for each player i.

• Period 1: each player plays (random choice) a particular strategy qij ∈ q0
i .

The corresponding market price , p1, is calculated.

• While Period ≤ T :

– The hypothetical profit of each strategy qij ∈ qt−1
i is calculated with

this price:
πij(qij , p1) = pt−1qij − C (qij) , for all i.

– Using GA procedures (selection, crossover and mutation) in each strat-
egy population, a new population of strategies qt

i is defined for each
firm on the base of these profits.

– Again the hypothetical profits are calculated
{πi1(qi1, p

t−1), ..., πik(qik, pt−1)}.
– From this set, one (possibly the best) strategy is drawn in order to be

played: qt
ij

– The new market price ; pt is calculated.

Figure 2: Pseudocode of the learning model with hypothetical profits

Since now qij cannot modify the given price pt−1, the total impact of qij on fij is given by

∂fij

∂qij
=

(
∂πi(qij , p

t−1)
∂qij

)Πi −
∂πi(qij , p

t−1)
∂qij

πi(qij , p
t−1)

Π2
i

=
(
∂πi(qij , p

t−1)
∂qij

)Πi,−j

Π2
i

=
(pt−1 − C

′
)Πij

Π2
i


> 0 if pt−1 > C ′

< if pt−1 < C ′

= 0 if pt−1 = C ′

with Πi =
∑k

l=1 πi(qi,l, p
t−1) and if Πij > 0.

As a consequence, the best fitness will be attained under the same conditions as Walrasian pricing
rule

(
C

′
= p
)

since:

• During the roulette wheel procedure of the GA, given a price p:

– higher quantities will spread in the population, as long as p > C
′
;

– lower quantities will diffuse if p < C
′
.

• The strategy that will be played will be the closest one to the competitive quantity if the selec-
tion of the strategy to play is based on maximal possible fitness: qj such that j ∈ maxqil

fil,∀l.

As we already shown above there is a strong relationship between evolution of the fitness and
ESS.

Proposition 7. Under hypothetical individual learning, the CE is not evolutionarily stable, while the
WE is.
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Proof.
Assume that all players except i are already at the CE solution and that they will never move,
QC
−i = {qC

1 , ..qC
i−1, q

C
i+1, ..q

C
n }. In this case, the learning of player i is identical to the learning of

its monopolistic optimal quantity, given that it doesn’t know the exact price relationship p(qi, Q
C
−i).

The hypothetical learning procedure leads to an evaluation of the profit at period t that is based
on the previous price pt−1 : πi,t(qij , pt−1) = pt−1qij − C(qij). It is straightforward to see that the
fitness evolution, as a maximization of the hypothetical profit, will lead to the Walrasian condition:
pt−1 = C

′
. As a consequence, the CE equilibrium is not ESS, while the WE is. �

0 10 20 30 40 50 60 70 80 90 100
72

74

76

78

80

82

84
Market price

Figure 3: Convergence to WE price with hypothetical learning

We use computational experiments to illustrate our results in this section and the following
one. The details of the simulation protocol are given in Appendix A. The Figure 3 clearly shows
the market price quickly converges to WE price in all simulations of a standard oligopoly with
hypothetical profits.

• Period 0: a set of k strategies, qij ∈ q0
i , is (randomly) drawn for each player

i.

• While Period ≤ T :

– If (Period (mod τ) = 0): Using GA procedures, as roulette wheel se-
lection, a new set of strategies, qφ

i , is defined for each firm.

– Each player plays a strategy qij ∈ qφ
i . The corresponding price market,

pt, is calculated. The realized profit is calculated (πi,t(Qt, pt)).

Figure 4: Pseudocode of learning model without expectations

4.2.2 Individual learning without expectations

In this approach, the firm must play strategies in order to evaluate their relative fitness. Each
population of strategies is played without modification during τ periods (an epoch corresponding to
the GArate in Vriend (2000)). A special case would be an epoch of k periods where each strategy
is played once, following a sequential order, but one can consider more sophisticated configurations.
During an epoch, strategies from given populations meet following the strategy-selection scheme used
(random, roulette wheel, play the best, etc.). Profits of strategies are computed as a consequence
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of this matching process and, at the end of the epoch, the GA modifies populations on the base of
these profits. Figure 4 gives the pseudocode of this configuration.

This learning algorithm differs from the hypothetical profit case by one important aspect. Each
strategy is evaluated based on the base of the real observed profit that it yields by repeatedly
meeting the strategies of other firms. This observed profit is necessarily based on the effective price
corresponding to these strategies and it can now include information on the demand curve if the same
population of quantities can meet different, but given, quantities of the competitors. This obviously
will possible if the GArate is long enough in comparison with the strategy population size.

Given a GArate, each individual strategy of the firm qij will play GArate times against the
strategy populations of other firms {qlj}l=1...n,l 6=g. On average, the profit of this strategy will be
given by

E [πi (qij , Q−i)] = E [p (qij , Q−i)] qij − C (qij) = pqij − C (qij)

with

p =
∑
l 6=i

p

(
qij
−

,
∑

l

qlj

)
f (qlj |GArate)

where f (qlj |GArate) is the frequency of each individual strategy of other firms, conditioned by the
strategy selection process (the selection of the strategies to be played on the market) and GArate.
We can observe that

GArate→∞⇒ f (qlj |GArate)→ f (qlj)

which is the real empirical frequency of each strategy in the strategy population of the firm l.
Moreover, given the populations of other firms, the average profit of qij that results from the matching
process now implies ∂p/∂qij < 0 and the selection process will be able to use this information on
the demand curve. As a consequence, the strategies that correspond to C ′ = p will be dominated
by strategies that are closer to the condition C ′ = p + qij∂p/∂qij < p. This mechanism will push the
strategies towards CE instead of WE.

Again we use computational experiments to illustrate these results. We gives results on conver-
gence conditioned by two main dimensions that arose in the preceding discussion: the GArate and
the mechanism that is used to select in the population the strategy to be played on the market (see
Appendix A). The results of our simulations (a batch of 25 simulations with each configuration) are
given in Figure 5. In each simulation we run exactly 300 generations for the GA.

Graphics (a1− c1) and (a2− c2) show that if the strategies do not meet enough frequently, the
information on demand is quite difficult to extract and firms have some difficulty to converge to
CE price, whatever the selection mechanism used for choosing the played quantities. This effect is
stronger for the random selection (RS) process since the matching of the strategies is not oriented at
all in this case. We observe that other mechanisms already fair quite well for GArate = 10.

Graphics (a3− c3) and (a4− c4) show that matching mechanisms integrating some intrinsic ran-
domness (in complement of the randomness implied by the GA – mutations) give rise to convergence
to CE price when GArate is higher. The PTB mechanism that systematically plays for each firm
its supposedly best strategy of the period has some difficulty to converge and it has a tendency to
over-shoot by over estimating the strength of dp/dqij and hence by over reducing the production of
firms. We also observe in graphics (a3− b3) and (a4− b4) that random selection secures an earlier
convergence to CE by more systematically extracting information on demand, in accordance with
the general result we have established above.

These results show that one does not need very specific Cournot oligopoly game and GA setup
in order to show the convergence to CE in the case of individual learning. A simple quadratic cost
oligopoly game and an elementary, real value based, GA with only selection and low mutation is
sufficient to observe this convergence.
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(a1) GArate = 1, RS (a2) GArate = 10, RS (a3) GArate = 50, RS (a4) GArate = 100, RS

(b1) GArate = 1, RWS (b2) GArate = 10, RWS (b3) GArate = 50, RWS (b4) GArate = 100, RWS

(c1) GArate = 1, PTB (c2) GArate = 10, PTB (c3) GArate = 50, PTB (c4) GArate = 100, PTB
RS : Random selection; RWS : Roulette wheel selection; PTB : Play the best

Figure 5: Convergence to the Cournot equilibrium price: Individual learning without expectations
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5 Conclusion

The main objective of this article is to gain some general understanding of the convergence to
equilibria in an oligopoly game with learning dynamics. We have established the properties, in terms
of evolutionary stability, of two types of potential equilibria in this game: Cournot equilibrium (CE)
and Walrasian equilibrium (WE). The first part of the particle shows that the WE is quite robustly
stable under general conditions when learning is based on imitation and random experimenting
(mutations). This result stems from the spite effect that appears when learning is possess such a
social dimension (like under imitation) and when dynamics are based on selection, hence on relative
performance of firms. Under the spite effect, learning through imitation and mutation diverts the
attention of firms from their own profits and prevents the emergence of dynamics based on best reply
in order to assure the evolutionary stability of the CE. The WE becomes the only ESS equilibrium
in this case. As a consequence, we study the possibility of multiple mutations, since this is more in
accordance with the playing the field aspect of the Cournot game (each firm meets in each period
the totality of other firms and not a single, randomly drawn competitor). We show in this case that
dynamics and stability are very difficult to analyze under general conditions. The second part of
the article hence focalizes a special setup for learning dynamics based on the properties of Genetic
Algorithms (GA) because this setup has yielded some puzzling results and controversies about the
convergence to CE. We first study the general conditions under which the selection in GA can
promote convergence to CE. We show that when the GA represents social learning, the convergence
can only occur to WE. In the case of individual learning, the convergence to CE is only possible if
the interactions of the firms allow them to discover the decreasing relationship between the market
price and their quantities. We show that this is not possible with learning based on hypothetical
profits (as considered by Arifovic in several articles and in the forthcoming paper, in collaboration
with Maaschek). Some memory of quantities associated to observed current profits is necessary in
order to secure this convergence. We show, in a computational setup close to Vriend (2000), but
under quite general cost and GA conditions, that the convergence to CE arises when firms’ strategies
have enough opportunity to meet each other before the intervention of the GA. Our results confirm
and clarify the results obtained in Vriend (2000).
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Appendix

A Numerical experiments

A.1 Oligopoly model of the experiments

Let define a simple general oligopoly game with

P (qi, Q−i) = a− b(qi + Q−i), a, b > 0

Ci(qi) = P (qi, Q−i)qi − (F + cqi + dq2
i )

FC, c ≥ 0, d ≤ 0.

where Q−i =
∑

j 6=i qj .

For the n firms oligopoly, the equilibria are given as follows (with Q−i = (n− 1)q−i):

Cournot–Nash equilibrium (CE): qC
i =

a− c

b + 2d + bn

Walrasian equilibrium (WE): qw
i =

a− c

2d + bn
> qC

i

In our simulations we use the following numerical specification for the oligopoly:
a = 256, b = 1, F = 0, c = 56, d = 1, n = 20.

CE: qC
i = 200/23 = 8.695 7, pC = 1888/23 = 82.087

WE: qW
i = 100/11 = 9.090 9, pW = 816/11 = 74.1818182

B GA and other specifications

In all simulations we have used the same genetic algorithm (GA): a real value based GA with 20 chromosomes.
We have kept the number of generations constant over all simulations in order to let other parameters determine
the learning capacity of the firms. In order to keep a GA structure as close as possible to our theoretical results,
we used a GA only based on selection (roulette wheel selection) and mutations (with a uniform rate of one
mutation in each run of the GA, for each firm).

The chromosomes of first generation for each firm are randomly generated in the interval
[
(1− γ) qC , (1 + γ) qW

]
,

with γ = 1%. In the case of the learning without expectations (LWE, epoch based learning), we have randomly
generated the profits corresponding to this first generation in the interval [0, 10].

Mutations introduce new strategies in the population and they are Gaussian, centered around the individual
strategy population average

q̂ij = q̄i + σℵ (0, 1)

with initial profits drawn using the same structure for the LWE case

π̂ij = π̄i + σℵ (0, 1) .

We use σ = 5% for the LWE case and σ = 1% in the learning with hypothetical profits case (LHP).
We have used the following scaled fitness functions for our experiments:

Hypothetical profits: Fij = exp

(
100 max

{
0,

πij

π∗i

})
Learning without expectations: Fij = exp

(
πij

π∗i

)
where π∗i is the maximal profit in the individual population of strategies.

In the learning without expectations case, three strategy selection mechanisms have been tested:

• Random selection (RS): a strategy is uniformly selected in the population to be played on the market;

• Roulette wheel selection (RWS): the probability of selection of a strategy is proportional to its relative
fitness, fij = Fij/

∑
Fij ;
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• Play the best selection (PTB): the strategy with the highest relative fitness is played.

In this case, the populations of strategies are played without the intervention of the GA for a given number of
periods (GArate in Vriend (2000). We test the following cases for the GArate: {1, 20, 50, 100}. The last case
corresponds the assumption used by Vriend.

In the LWHP case, only the best strategy is played in accordance with Arifovic and Maaschek (forthcoming).
We run 25 simulations with each configuration and the graphics give the averages over firms for these 25 simula-

tions, as in Vriend (2000) and Arifovic and Maaschek (forthcoming).
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