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Résumé 

Dans le cadre d'études économiques, biomédicales ou industrielles par exemple, 
on cherche souvent à déterminer le quantile d'un vecteur aléatoire 
conditionnellement à un autre. On parle alors de quantiles spatiaux 
conditionnels. Dans cet article, nous traitons dans un premier temps le cas de 
quantiles spatiaux, puis celui de quantiles spatiaux conditionnels. Il est à noter 
que l'absence de relation d'ordre total dans un espace multidimensionnel ne va 
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(conditionnels ou non) au cas des quantiles spatiaux ou multivariés. Nous nous 
focalisons ici sur la notion de quantile spatial telle qu'elle a été proposée par 
Chaudhuri (1996) et nous donnons les estimateurs correspondants. A cet effet, 
nous présentons deux algorithmes permettant le calcul des estimateurs proposés. 
Une implémentation sous le logiciel R de ces algorithmes a été mise en oeuvre. 
Pour finir, nous illustrons les différentes notions de quantiles spatiaux non 
conditionnels et conditionnels  l'aide de jeux de données simulées. 
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1 Institut de Mathématiques de Bourgogne (UMR CNRS 5584)
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dans un espace multidimensionnel ne va pas permettre de généraliser directement la notion de quantiles
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1 Introduction

Quantiles of univariate data are frequently used to construct popular descriptive statistics. For ex-

ample, the median is a robust indicator of the central tendency of a population and the interquartile

range is a good one’s for its dispersion. In addition, quantiles have been used in regression setup

(called “regression quantiles”) (see Efron, 1991 and Koenker and Basset, 1978) with a univariate re-

sponse to get robust estimators of parameters in linear models (see Chaudhuri, 1992b and Koenker

and Portnoy, 1987). From a practical point of view, quantiles are computed according to an order

criterion. Because this order is not total on Rd, an extension of the classical quantile definition

in the case when observations are in Rd can be only partial. It acts in this case of the quantile

vector (called arithmetic) whose components are the marginal classical quantiles. This definition

suffers from several weaknesses. In particular, it is not invariant by rotation and it does not take

account of the possible existence of correlations between the different components of the vectors of

observations (see Chakraborty, 2001).

Some authors are interested to the problem of ordering multivariate observations and they have

gove several techniques, for example Barnett (1976) Plackett (1976) and Reiss (1989). In statis-

tical literature we find some approaches proposed to define quantiles for multivariate data. For

example Eddy (1985) defined mutivariate quantiles using nested sequence of sets and Brown and

Hettmansperger (1987, 1989) introduced bivariate quantiles based on the definition of Oja’s me-

dian (see Oja, 1983). Recently, Donoho and Gasko (1992), Liu, Parelius and Singh (1999) and Zuo

and Serfling (2000) defined multivariate quantile using different depth functions and Abdous and

Theodorescu (1992), Chaudhuri (1996) and Koltchinskii (1997) defined them with a class of M -

estimates (see Serfling, 1980). The definition of multivariate quantile proposed by Chaudhuri (1996)

(called geometric) is equivariant under any homogeneous scale transformation of the coordinates

of the multivariate observations (Chaudhuri, 1996). From now on, we will speak about spatial

quantiles to refer to this definition.

Within the biomedical studies framework, a variable of interest Y with values in Rd (for example

blood pressure with its two components: systolic and diastolic pressures) can be concomitant with

an explanatory variable X with values in Rs (for example the age and the weight of the patient).

In this case, we are brought to seek the conditional spatial quantile of Y given X.

This paper is organized as follows. In Section 2, we recall characterizations of the univariate

quantile function. They are generalized in Section 3 to define the spatial quantile. We present then

an algorithm allowing to calculate its estimator. In Section 4, we present the theoretical conditional

spatial quantiles and their estimators. A calculation algorithm of these estimators is also exposed.

Examples on simulated data are given in Section 5 in order to illustrate the numerical behaviors of

the estimators. Finally technical proofs are deferred in the Appendix.
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2 Univariate quantiles

2.1 Definition

Let Y ∈ R be an univariate random variable, and let F be its cumulative distribution function

(c.d.f.) The quantile function is defined as the inverse of the c.d.f. When F is a monotonically

increasing function, its inverse can be defined without ambiguity, but it remains constant on all

intervals on which the random variable does not take values. In a general way, the quantile function

of Y is noted QF (.) and it is defined, for p ∈ (0, 1), such as:

QF (p) = F−1 (p) = inf {y : F (y) ≥ p} . (1)

2.2 Two characterizations of univariate quantiles

2.2.1 Characterization by equation root

Let Q (.) be a function defined on the interval (−1, 1) as:

Q (u) = F−1

(
1 + u

2

)
.

The function Q (.) is named “median-centred quantile function” and it satisfies:

• for u = 0, Q(0) is the (classical) median (the quantile of order p = 1/2),

• Q−1(y) = 2F (y)− 1.

Now let S be the following function: S (y − Y ) =

{
1 if y − Y ≥ 0,

−1 if y − Y < 0.

The quantile QF (p) is the root of the equation

E (S (y − Y ))− (2p− 1) = 0. (2)

Proof

Let u = 2p− 1, using the above definition of Q(.), we have:

F
(
F−1 (p)

)
− p = P

(
Y ≤ F−1 (p)

)
− p

= E(1l{Y≤F−1(p)})− p

= E(1l{Y≤F−1( 1+u
2 )})−

1+u
2

= E(1l{Y≤Q(u)})− 1+u
2

= E(1l{Q(u)−Y≥0} − 1+u
2 )

= 1
2E([21l{Q(u)−Y≥0} − 1]− u)

= 1
2E(S (Q (u)− Y )− u)

Because F
(
F−1 (p)

)
− p = 0, we deduce that QF (p) = Q (u) is the solution y of the equation (2).
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2.2.2 Characterization by minimization approach

Using Ferguson(1967) and Koenker and Basset (1978), the quantile can be defined as the solution of

the following minimization problem. Let p ∈ (0, 1) a fixed probability. For t ∈ R, let φ(2p− 1, t) =

|t|+(2p−1)t the so-called loss function. The quantile function of Y is noted QM (.) and it is defined

such that

QM (p) = arg min
θ∈R

E{φ (2p− 1, Y − θ)} = arg min
θ∈R

∫
R

(|y − θ|+ (2p− 1) (y − θ))F (dy) . (3)

It is easy to check that, for u = 2p−1, the quantile QM (p) may be also represented as the solution

y of the equation E (S (y − Y )) = u. That is QM (p) = Q(u) with u = 2p− 1.

2.2.3 Remarks

1) For a fixed p, QF (p) = QM (p) = Q(u) when u = 2p− 1.

2) The function Q−1(.) is called “centred rank function”. The sign of u = Q−1(y) indicates the

position of the point y compared to the median: if u is negative (resp. positive), y is on the left

(resp. on the right) of the median. Moreover, the “magnitude” (for example the absolute value in

the univariate case) of u = Q−1(y) informs us about the order of the quantile: if u is close to -1

(resp. to +1), y is a quantile with order p close to 0 (resp. to 1).

3) We have introduced the characterization Q(u) for the quantile because it can be generalized in

the multivariate framework. In practice, we will use this characterization to calculate the estimator

of the quantile.

2.3 Estimation

Let Y1, . . . , Yn be n observations of y in R. A nonparametric estimator of the c.d.f F is given, for

y ∈ R, by:

Fn(y) =
1
n

n∑
i=1

1l{Yi≤y}.

Thus, for p ∈ (0, 1), we can deduce an estimator QFn(p) of QF (p) as follows:

QFn(p) = F−1
n (p) = inf {y : Fn (y) ≥ p} .

For u = 2p − 1, using charaterization given in (2), the estimator Qn(u) of Q(u) can be viewed as

the solution y of the following equation

1
n

n∑
i=1

S (y − Yi) = u. (4)

It is easy to show that Qn(u) = QFn(1+u
2 ) = QFn(p) is an estimator of the quantile Q(u) = QF (p).

In fact, we have

Fn

(
F−1

n (p)
)
− p =

1
n

n∑
i=1

(
1l{Yi≤F−1

n (p)} − p
)

=
1
2n

n∑
i=1

[S (Qn (u)− Yi)− u] ,
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Using the charaterization (3) given by the minimization approach and for u = 2p− 1, the quantile

QM (p) can be estimated by

QM,n(u) = arg min
θ∈R

n∑
i=1

φ (u, Yi − θ) = arg min
θ∈R

n∑
i=1

|Yi − θ|+ u (Yi − θ) .

It is easy to check that, for u = 2p−1, the estimator QM,n(u) of the quantile can be represented as

the solution y of the equation (4). Thus, for u = 2p− 1, these estimators of the quantile are equal:

QFn(p) = Qn(u) = QM,n(u)

3 Spatial quantile

When the random variable Y is a vector of Rd, the definition of univariate quantile given by

equation (1) is not valid because it is based on the idea to order the observations. However, in Rd,

the order is not total.

From now on, the vectors are considered as column and the superscript “T” is used to indicate

the transpose of vectors or matrices. We suppose that Y ∈ Rd. In the statistical literature,

multivariate quantiles have been studied by a certain number of authors, see for example Abdous

and Theodorescu (1992) and Chaudhuri (1996). We choose here to focus on the approach proposed

by Chaudhuri.

3.1 Two characterizations of spatial quantile

3.2 Characterization by equation root

Let S be a function defined as S (v) =
v
||v||

for any non null vector v ∈ Rd. Let u be a vector of

the unit ball Bd =
{
u ∈ Rd : ||u|| < 1

}
. If Y is an absolutely continuous random variable, Q (u) is

the unique solution y of the following equation:

E (S (y−Y))− u = 0. (5)

For any y ∈ Rd, we can calculate the corresponding vector u ∈ Bd by

Q−1 (y) = E (S (y−Y)) .

3.3 Characterization by minimization approach

According to Chaudhuri (1996), the definition of the spatial quantile is a generalization of the

univariate quantile definition introduced by Koenker and Basset (1978) and given by the equation

(3). We consider the multivariate loss function defined as

φ (u, t) = ||t||+ 〈u, t〉 ,
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where ||.|| is the usual Euclidean norm and < ., . > is the usual Euclidean inner product, with

t ∈ Rd and u ∈ Bd.

Chaudhuri proposed to define the spatial quantile as follows:

QM (u) = arg min
θ∈Rd

E {φ (u,Y− θ)} .

The function E {φ (u,Y− θ)} is defined only when E (Y) < ∞. Using an artifice of Kemperman

(1987), the function E {φ (u,Y− θ)− φ (u,Y)} is always defined. These two functions admit the

same minimum when this one exists. This makes it possible to define the quantile as follows:

QM (u) = arg min
θ∈Rd

E {φ (u,Y− θ)− φ (u,Y)} . (6)

In a similar way to the univariate case, it is easy to check that, for any vector u ∈ Bd, QM (u) is

the solution y of the equation (5) and therefore QM (u) = Q (u) .

3.4 Estimation

Let Fn be an empirical nonparametric estimator of F obtained from the observations Y1, . . . ,Yn

of Y ∈ Rd. We can define an estimator Qn (.) of the spatial quantile Q(.) for all u ∈ Bd, by:

Qn (u) = arg min
θ∈Rd

∫
(φ (u,y− θ)− φ (u,y))Fn(dy)

= arg min
θ∈Rd

n∑
i=1

(φ (u,Yi − θ)− φ (u,Yi))

The vector u gives us information about the estimator of the quantile Qn (u). In fact,

• to determine the order of the spatial quantile, we have just to calculate the norm of u: if

||u|| ≈ 1 (resp. 0), then Qn(u) is an extreme quantile (resp. central quantile, i.e. close to the

spatial median).

• u is a vector of Bd, its direction indicates the position of the spatial quantile compared to

the spatial median.

From the characterizations 3.2 and 3.3, it is easy to chek that, for u ∈ Bd, the estimator Qn(u) of

the spatial quantile Q(u) can be seen as the solution y of the following equation:∫
S (y− t) Fn(dt) =

1
n

n∑
i=1

S (y−Yi) = u. (7)

Remarks.

• The term ||u|| said “extent of deviation” must not be considered as the Euclidean distance

between Q (u) and the spatial median M = Q(0). Moreover, the distance between Q (u) and

M does not increase with ||u||.
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• Contrary to the univariate case where u = 2p − 1, the “magnitude” ||u|| does not carry

any probabilistic interpretation where d ≥ 2. In particular, let us consider the region

{Qn (u) : ||u|| ≤ 0.5}. In the univariate case, it corresponds to the interquartile region with
1
4 ≤ p ≤ 3

4 . In the multivariate case, this region does not necessarily contain 50% of observa-

tions.

These two remarks are illustrated below by two examples inspired from Serfling (2002).

Example 1. Let F = 1
2F1+ 1

2F2, with F1 and F2 two uniform distributions respectively on [−100, 0]

and [0, 1]. The following quantiles are calculated: M = 0, Q
(

1
2

)
= QF

(
3
4

)
= 1

2 , Q
(
−1

2

)
=

QF

(
1
4

)
= −50 and Q (−0.1) = QF (0.45) = −10.

• For u = ±1
2 , we have |u| = 1

2 but the corresponding quantiles Q(1
2) = 1

2 and Q(−1
2) = −50

are not equidistant compared to the median.

• For u1 = −0.1 and u2 = 1
2 we have |u1| < |u2| but |Q (−0.1) | > |Q

(
1
2

)
|. We observe here

that the Euclidean distance between the quantile and the median does not increase with |u|.

Example 2. We consider 12 points, {y1, . . . ,y12} in R2 given in Table 1. We give for every

observation a quantile interpretation, yi = Q(ui), then we calculate, using the equation (7), the

vector ui = 1
n

∑12
j=1 S(yi − yj), and its norm ||ui||. These two quantities are specified in Table 1.

i yi = Q (ui) ui ||ui||
1 (0,1) (0.011, 0.251) 0.252

2 (0,-1) (0.011, -0.252) 0.252

3 (1,0) (0.273, 0.000) 0.273

4 (-1,0) (- 0.273, 0.000) 0.273

5 (0,3) (0.039, 0.505) 0.5060

6 (0,-3.1) (0.039, - 0.505) 0.5079

7 (0,15) (0.368, 0.735) 0.736

8 (0,-15) (0.368, - 0.735) 0.736

9 (0,20) (0.030, 0.907) 0.908

10 (0,-20) (0.030, - 0.907) 0.908

11 (-10,0) (0.825, 0.000) 0.742

12 (1.7,0) (0.507, 0.000) 0.5077

Table 1: Data points yi, values of the corresponding vectors ui and their norms ||ui|| used in

Example 2. (The various values of ui and ||ui|| were round with the thousandths.)

The observations which are in the region {Q (u) : ||u|| ≤ 0.5} are here the four points y1, . . . ,y4

which represent only the one third of the observations and not the half one’s.

In the following paragraph, we recall the algorithm of Chaudhuri (1996) allowing to obtain an

estimator of the spatial quantile.
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3.5 Algorithm

The computation of the spatial median as being the quantity M that minimize
∑n

i=1 ||Yi−M|| was

approached by Bedall and Zimmermann (1979) and Gower (1974). Minimization algorithms were

proposed by these authors. Recently, Chaudhuri (1996) proposed an iterative algorithm allowing to

calculate the estimator of the spatial quantile corresponding to a fixed direction u. This algorithm

is based on the following result.

Theorem 3.1 Let Y1, ...,Yn with Yi ∈ Rd be a sample of distinct observations of Rd. Let Qn(u)

be an estimator of the spatial quantile Q(u).

- If Qn(u) 6= Yi, ∀ 1 ≤ i ≤ n, then

n∑
i=1

Yi −Qn(u)
||Yi −Qn(u)||

+ nu = 0.

- If ∃ 1 ≤ i ≤ n such as Qn(u) = Yi, then∣∣∣∣∣
∣∣∣∣∣

∑
1≤i≤n;Yi 6=Qn(u)

[
Yi −Qn(u)
||Yi −Qn(u)||

+ u

] ∣∣∣∣∣
∣∣∣∣∣ ≤ ∑

1≤i≤n;Yi=Qn(u)

(1 + ||u||).

The proof of this theorem is detailed in the article of Chaudhuri (1996). Then the corresponding

algorithm of Chaudhuri (1996) comprises two steps:

• Step 1. For each 1 ≤ i ≤ n, we test the following condition:∣∣∣∣∣
∣∣∣∣∣ ∑

1≤j≤n;j 6=i

[
Yj −Yi

||Yj −Yi||

]
+ (n− 1)u

∣∣∣∣∣
∣∣∣∣∣ ≤ (1 + ||u||). (8)

If this condition is satisfied for some i, then Qn(u) = Yi.

Otherwise, one moves to the next step and tries to solve the following equation:
n∑

i=1

Yi −Qn(u)
||Yi −Qn(u)||

+ nu = 0. (9)

• Step 2. This step consist to resolve, with an iterative way, the equation (9). Let us denote by

Q(1)
n (u) an initial approximation of Qn(u). In practice we can choose, for Q(1)

n (u), the vector

of empirical marginal medians of the d components of Y, calculated from the observations

Y1, . . . ,Yn.

Let Q(1)
n (u), . . . ,Q(m)

n (u) be successive approximations of Qn(u) obtained from the first m

iterations. The (m + 1)th approximation is computed in the following way.

Let

∆ =
n∑

i=1

Yi −Q(m)
n (u)

||Yi −Qm
n (u)||

+ nu,

and

Φ =
n∑

i=1

1

||Yi −Q(m)
n (u)||

[
Id −

(Yi −Q(m)
n (u))(Yi −Q(m)

n (u))T

||Yi −Q(m)
n (u)||2

]
,
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where Id is the d × d identity matrix. When the observations Y1, . . . ,Yn are not lied on a

single straight line, the matrix Φ is positive definite, and in this case, one defines:

Q(m+1)
n (u) = Q(m)

n (u) + Φ−1∆.

In practice, we stop iterations when one obtains two closely successive approximations.

4 Conditional spatial quantile

We generalize in this section the previous results in the conditional framework.

4.1 Definition

Having a sample of observations {(X1,Y1), . . . , (Xn,Yn)} from a vector (X,Y) with values in

Rs×Rd, we are interested in studying the relationship between X and Y. The conditional quantiles

represent a mean to approach this problem.

In the univariate case (i.e. Y ∈ R), when the functionnal form between X and Y is unknown,

there is a large variety of methods allowing to estimate conditional quantiles. For example we

quote the kernel estimation, the local constant kernel estimation and the double kernel estimation

(see Gannoun et al. (2002) for a description of these methods). On the other hand, few authors

are interested in the conditional spatial quantile and their properties. Recently De Gooijer et al.

(2006) have introduced the conditional spatial quantile based on the minimization of the pseudo-

norm given by Abdous and Theodorescu (1992).

We present here an alternative formalization of the conditional spatial quantile based on generaliza-

tion of the notion of spatial quantile studied by Chaudhuri (1996). Chaudhuri indexes the spatial

quantile by a vector u in Bd which allows to give us not only the idea about the “extreme” and

“central” observations, but also about their position in the multivariate scatterplots.

We define the conditional spatial quantile of the variable Y given X = x as:

Q(u|x) = arg min
θ∈Rd

∫
Rd

{φ(u,y− θ)− φ(u,y)}F (dy|x). (10)

Moreover, as in the previous section, the conditional spatial quantile can be seen as the solution y

of the following equation:

E (S (y−Y) | X = x) = u. (11)

4.2 Estimation

Let Fn(.|x) be the nonparametric (Nadaraya-Watson) estimator of the conditional distribution

function of Y given X = x, defined, for all y ∈ Rd, as

Fn(y|x) =
n∑

i=1

wn,i1l{Yi≤y},
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where wn,i =
k ((x−Xi) /hn)∑n
i=1 k ((x−Xi) /hn)

is a weight associated to Yi, the kernel function k is a density

function and hn (the window) is a real positive sequence such that hn → 0 as n →∞.

We can deduce using equation (10), an estimator Qn(u|x) of the conditional spatial quantile Q(u|x)

as:
Qn(u|x) = arg min

θ∈Rd

∫
Rd

{φ(u,y− θ)− φ(u,y)}Fn(dy|x)

= arg min
θ∈Rd

n∑
i=1

wn,i {φ(u,Yi − θ)− φ(u,Yi)} .

From the equation (11), the estimator Qn(u|x) of the quantile Q(u|x) can be viewed as the solution

y of the following equation,∫
S (y− t) Fn(dt|x) =

n∑
i=1

S (y−Yi) wn,i = u. (12)

In the following paragraph we propose an algorithm allowing to compute an estimator of the

conditional spatial quantile.

4.3 An algorithm to estimate the conditional spatial quantile

We first generalize Theorem 3.1 in the conditional case.

Theorem 4.1 We consider n observations of couples of random vectors {(X1,Y1), . . . , (Xn,Yn)}
with values in Rs × Rd. Let n ≥ d + s. Let Qn(u|x) be an estimator of Q(u|x).

• If for each 1 ≤ i ≤ n, Qn(u|x) 6= Yi, then we have:

n∑
i=1

Yi −Qn(u|x)
||Yi −Qn(u|x)||

K

(
x−Xi

hn

)
+ u

n∑
i=1

K

(
x−Xi

hn

)
= 0. (13)

• If for some i, we have Qn(u|x) = Yi, then∣∣∣∣∣∣
∣∣∣∣∣∣

∑
1≤i≤n;Qn(u|x) 6=Yi

Yi −Qn(u|x)
||Yi −Qn(u|x)||

K

(
x−Xi

hn

)
+

∑
1≤i≤n;Qn(u|x) 6=Yi

K

(
x−Xi

hn

)
u

∣∣∣∣∣∣
∣∣∣∣∣∣

≤
∑

1≤i≤n;Qn(u|x)=Yi

K

(
x−Xi

hn

)
(1 + ||u||). (14)

The proof of this theorem is postponed to the Appendix. Using this theorem, the algorithm to

compute the estimator of the conditional spatial quantile splits into two steps.

• Step 1. For each 1 ≤ i ≤ n, we test the following inequality:∣∣∣∣∣∣
∣∣∣∣∣∣

∑
1≤j≤n; j 6=i

Yj −Yi

||Yj −Yi||
K

(
x−Xj

hn

)
+

∑
1≤j≤n; i6=j

K

(
x−Xj

hn

)
u

∣∣∣∣∣∣
∣∣∣∣∣∣
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≤ K

(
x−Xi

hn

)
(1 + ||u||). (15)

If this condition is satisfied for the observation i, then Qn(u|x) = Yi.

Otherwise one passes to the second step which consists in resolving numerically equation (13).

• Step 2. Let the initial approximation Q(1)
n (u|x) (∈ Rd) be the vector of the empirical

conditional medians of Y, computed from the observations {(X1,Y1), . . . , (Xn,Yn)}. We

denote by Q(1)
n (u|x), ...,Q(m)

n (u|x) successive approximations of Qn(u|x)

The (m + 1)th approximation Q(m+1)
n (u|x) is computed as follows.

Let

∆ =
n∑

i=1

Yi −Q(m)
n (u|x)

||Yi −Q(m)
n (u|x)||

K

(
x−Xi

hn

)
+ u

n∑
i=1

K

(
x−Xi

hn

)
and

Φ =
n∑

i=1

1

||Yi −Q(m)
n (u|x)||

[
Id −

(Yi −Q(m)
n (u|x)) (Yi −Q(m)

n (u|x))T

||Yi −Q(m)
n (u|x)||2

]
K

(
x−Xi

hn

)
.

If the observations Yi are not lied on the single straight line, then Φ is a defined positive

matrix and we define:

Q(m+1)
n (u|x) = Q(m)

n (u|x) + Φ−1 ∆.

Iteration is continued until two successive approximations of Qn(u|x) happen to be sufficiently

close.

5 Simulations

In order to make easy the realization and the interpretation of the graphics, we suppose that d = 2

(two-dimensional case). The identification of the extreme observations in a sample represents an

important step in a statistical study. In the univariate case, we can determine these values using

the boxplot. In this section, we give a graphic (called quantile contour plot) which can be seen as

the boxplot in the multivariate framework.

In this simulation study, we consider a vector u ∈ B2 of the form (rcosθ, rsinθ)T with r taking

its values in {rk = k
10 , k = 1, . . . , 9} and θ taking its values in {θl = πl

16 , l = 0, 1, . . . , 31}. Then we

compute for each vector u the corresponding spatial quantile. The set {Qn(u) : ||u|| = r}, with

0 < r < 1, is named “quantile contour plot”. This set can be considered as the equivalent of the

boxplot in the multivariate case (see Chakraborty (2001)). When the norm r of u is close to 1, the

observations located outside this contour can be classed as extreme. The choice of r depends on

the study framework. Generally, the specialist fixes it according to its objectives.
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5.1 A first simulation: case of unconditional spatial quantiles

To illustrate the construction of quantile contour plot, we simulate 200 observations according to

the multinormal distribution N2(0, I2). We note by Y1 and Y2 the two components of Y ∈ R2.

In order to compute the quantile contour plot of radius r, we use the vector u such that ||u|| = r

while the angle θ varies from θ0 to θ31. Then we interpolate the estimated spatial quantiles in order

to get the corresponding quantile contour plot. Figure 1 (a) represent nine estimated contours

(from 10% to 90%) ploted on the corresponding scatterplot.
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Figure 1: Quantile contour plots from 10% to 90% for observations given by (a) a N2(0, I2) distri-

bution, and (b) by a N2(0,Σ) distribution.

In order to make sure that contours adapt with the form of the scatter plot, we simulate 200

observations according to the multivariate normal distribution N2(0,Σ) with Σ =

(
5 0.4

0.4 1

)
.

Figure 1 (b) shows that the contours have a different form than those presented in Figure 1 (a),

this confirms that they take well into account the various variances and covariances.

5.2 A second simulation: case of conditional spatial quantiles

In order to see the behavior of the conditional spatial quantile estimators, while varying the vector

u, we have simulated 200 observations according to the following multivariate normal distribution:
Y1

Y2

X

 ∼ N3

0,Γ =


5 0.2 0.4

0.2 1 0.9

0.4 0.9 1


 .
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In this example, we have fixed x = 0. Then for each value of u, we compute the estimator of the

corresponding conditional spatial quantile.
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Figure 2: Conditional quantile contour plots from 10% to 90% for x = 0

Figure 2 shows that the conditional quantile contour plots from 10% to 90% ploted using the esti-

mators of the conditional spatial quantiles adapt well with the form of the scatterplot. In addition,

we know that the estimator of the spatial median (corresponding to u = (0, 0)) converges asym-

totically to the true median which is here for a multivariate normal distribution equal to the mean

(0, 0), so to check the quality of the estimator we have compared the estimated spatial median to the

theoretical mean. For u = (0, 0), we have Qn(u |x = 0) = (0.08,−0.03), which is very close to (0, 0).

Appendix

Proof of Theorem 4.1

• The first result can be deduced directly from the equation (11). If the observations are not

lying in a single straight line in Rd, then the conditional spatial quantile is the unique solution

y of the equation (11). Then we deduce that Qn(u|x) satisfy the following equation:

n∑
i=1

Qn(u|x)− y
||Qn(u|x)− y||

K

(
x−Xi

hn

)
= u

n∑
i=1

K

(
x−Xi

hn

)
.

• Let us prove now the second part of the theorem. The function Φ(u,y) is a convex function

13



on Rd and it depends on y. One deduces that

Qn(u|x) = arg min
Q

n∑
i=1

Φ(u,Yi −Q)K
(

x−Xi

hn

)

if and only if, for any h ∈ Rd, we have

lim
t→0+

[
n∑

i=1

Φ(u,Yi −Qn(u|x) + th)K
(

x−Xi

hn

)
−

n∑
i=1

Φ(u,Yi −Qn(u|x))K
(

x−Xi

hn

)]
≥ 0.

However, for all y, h ∈ Rd such as y 6= 0, we get:

lim
t→0+

Φ(u,y + th)− Φ(u,y)
t

= lim
t→0+

||y + th|| − ||y||+ < u, th >

t
= <

y
||y|| + u,h > .

Moreover, for all h ∈ Rd and y = 0, we have

lim
t→0+

Φ(u, th)− Φ(u, 0)
t

= || h ||+ < u,h > .

Thereafter, using those two properties on the previous inequality, we obtain:∑
1≤i≤n;Qn(u|x) 6=Yi

K

(
x−Xi

hn

)
<

Yi −Qn(u|x)
||Yi −Qn(u|x)||

+ u,h >

+
∑

1≤i≤n;Qn(u|x)=Yi

K

(
x−Xi

hn

)
(|| h ||+ < u,h >) ≥ 0.

Because this inequality is true for all h ∈ Rd, it is true also for −h. While replacing h par−h

in the previous inequality, we obtain then:∑
1≤i≤n;Qn(u|x)=Yi

K

(
x−Xi

hn

)
(|| h ||− < u,h >) ≥

∑
1≤i≤n;Qn(u|x) 6=Yi

K

(
x−Xi

hn

)
<

Yi −Qn(u|x)
||Yi −Qn(u|x)||

+ u,h > . (16)

On the other hand, using the Schwartz inequality, we get:

| || h || ± < u,h >| ≤ || h ||+ | < u,h > | ≤ (1 + || u || )|| h ||.

Thus, inequality (16) is equivalent to∑
1≤i≤n;Qn(u|x)=Yi

K

(
x−Xi

hn

)
(1 + || u ||)|| h || ≥

∑
1≤i≤n;Qn(u|x) 6=Yi

K

(
x−Xi

hn

)
<

Yi −Qn(u|x)
||Yi −Qn(u|x)||

+ u,h > . (17)
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Because this inequality is true for all h ∈ Rd, we can choose in particular

h =
Yi −Qn(u|x)
||Yi −Qn(u|x)||

+ u. (18)

and if we put this value of h in equation (17), we get :∑
1≤i≤n;Qn(u|x)=Yi

K

(
x−Xi

hn

)
(1 + || u ||) ≥

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
1≤i≤n;Qn(u|x) 6=Yi

K

(
x−Xi

hn

)(
Yi −Qn(u|x)
||Yi −Qn(u|x)||

+ u
)∣∣∣∣∣∣
∣∣∣∣∣∣

Then we deduce the inequality (14).

Remark. The R-codes allowing to estimate spatial quantiles, conditional spatial quantiles and

quantiles contour plots are available and can be asked to the authors.
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