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1 Introduction

The seminal contributions of Schmookler (1966), Scherer (1982) and Griliches (1984)

clearly pointed out the relevance of patent data for economic analysis. Since then, the

successive waves of empirical contributions in the domain seem to have mainly relied upon

access to new information produced from patent data. For instance, the series of articles in

Jaffe and Trajtenberg (2002) build upon the access to the USPTO applications data on ci-

tations to patent literature. A new challenge for economic analysis obviously resides in the

reliable identification of inventors in patent data. Such information could allow the pro-

fession to deeply revisit the investigation of knowledge flows, either through co-invention

network analysis (Carayol and Roux, 2008) or through the systematic investigation of in-

ventors’ mobility (in space or across assignees). Nevertheless that issue is not trivial since

we face a large scale “who’s who” issue due to the homonymy of inventors and spelling

errors. Most of the time such errors cannot be neglected since small identity errors usu-

ally make great changes in the data. For instance, a few (positive) homonymy errors lead

to consider that two different persons are the same. Thus, one mistakenly generate some

very connected agents who will abusively link different communities (the ones to which the

“true” agents are connected). Negative homonymy errors would lead to the opposite, that

is to ignore the role of bridging agents. As it is well known in the literature on networks,

statistics describing the network such as the average inter-individual distance (to which

the effectiveness of knowledge diffusion may be associated) are significantly affected by

such errors. Therefore, the use of the information on patent inventors requires the correct

identification of individual identities in patent data through some reliable, systematic and

reproducible methodology.

A series of large scale studies already intended to tackle the issue of the identification

of inventors identities has adopted more or less some ad hoc techniques. Singh (2003)

assumes an inventor can be fully identified by an identical first and last name, middle

initial, and patent subfield. Fleming et al. (2007) rely on the frequencies of last names

and the overlap of co-inventors. The most systematic contributions to the issue are the

ones of Lissoni et al. (2006) and Melamed et al. (2006) which provide comprehensive

techniques for matching inventors with same names and first names in the former article

and with different names using the Soundex system in the second one. In both papers,
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pairs of potentially identical inventors are matched on the basis of a similarity scoring

relying on information on location, assignee, technological classification, citations, and the

overlap of co-inventors. Nevertheless their techniques are not based on clear theoretical

grounds and thus face two major drawbacks. First, they arbitrarily assign a given increase

in the similarity scores between two identities when recording that they have the same

observation for some variable. For instance, why should living in the same city count

more or less than patenting in the same technological class to infer that two identities

correspond to the same person? Second, the relative frequencies of each variable modality

are not taken into account. For instance, positive homonymy errors are more likely for

persons having frequent names. Similarly, two homonyms are more likely to be different

persons if they are both localized in a large city rather than if they are both localized in

a small town.

This paper introduces a Bayesian methodology for estimating that two ex ante different

persons are the same given a series of observables provided by the data.1 This methodology

fully overcomes the two drawbacks of previous studies stressed above. It is applied on a

dataset of all inventors listed in European patent applications having an address in France

from 1978 to 2003, which implies nearly 237, 000 inventor×patent occurrences. Given that

an empirical benchmark is available (a relatively limited list of undoubtable observations

on potentially identical agents), we can determine a threshold value which minimizes any

linear combination of positive and negative errors in the benchmark data. Our main

empirical result is that the minimal weighted share of negative and positive errors in our

preferred specification is less than two percents over potential ones.

The Bayesian methodology in developed in Section 2 while the estimations and the

results are presented Section 3. Section 4 concludes.

2 Theory

Let us first consider a list I of identities or ex ante agents i, that is agents for whom

we surely (or almost surely) know that, though we may observe them several times in

the data, they are the same person. Each ex ante agent i is characterized by a series of

1Though this methodology is developed for inventors in patent data, it can be applied to other data

having a similar structure.
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K variables (including name and first name) labeled Xk (in vector form 1 × #I), with

k = 1, ..., K. We assume that these variables are mutually independently distributed, an

hypothesis that simplifies considerably the exposure while it may be relaxed easily.

The main goal of this paper is to provide a methodology to estimate the probability

that any ex ante agent i ∈ I is the same person than some other ex ante agent j ∈ I.

In short, we are in search of the partition π = {C1, ..., Cm} of I, with ∪i=1,...,mCi = I,

and Cj ∩ Ch = ∅,∀j, h = 1, ..., m with j 6= h , which corresponds to the “correct” ex post

identities. We note {i, j} ⊂ Ch by writing “i = j”.

In order to assess the probability of that event, we may condition on the observables

on i and j, that are draws of random variables Xk
i and Xk

j for all k = 1, ..., K and their

respective frequencies of occurrence. Without loss of generality, let’s assume that for some

ex ante agents i and j, we have Xk
i = Xk

j , for all k = 1, ..., k̄ − 1 and Xk
i 6= Xk

j for all

k = k̄..., K. Thus, we intend to estimate the following conditional probability:

Pr
(

i = j

∣

∣

∣
Xk

i = Xk
j ,∀k = 1, ...k̄ − 1 and Xk′

i 6= Xk′

j ,∀k′ = k̄, ...K
)

. (1)

That probability shall in turn ground the calculation of similarity scores between i and j

on which decisions relative to who’s who shall be taken.

2.1 A Bayesian approach

To calculate a variation of (1), we rely upon a Bayesian approach. Before, we need first

to compute the probabilities that ex post (real) agents change their observables from one

invention occurrence to the other. Let’s write εk the probability that any ex post agent

changes his kth variable between two invention occurrences in which he was identified for

instance as ex ante agent i and ex ante agent j: εk ≡ Pr
(

Xk
i 6= Xk

j , |i = j
)

. We further
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assume that εk is independent of εk′

,∀k 6= k′.2,3 Therefore, we can write:

Pr
(

Xk
i = Xk

j ,∀k = 1, ...k̄ − 1, and Xk′

i 6= Xk′

j ,∀k′ = k̄, ...K

∣

∣

∣
i = j

)

(2)

= Πk=1,...k̄−1

(

1− εk
)

Πk′=k̄,...,Kεk′

.

We can now apply the Bayes rule, according to which the probability in (1) is equal to

Pr(i = j)× Pr
(

Xk
i = Xk

j ,∀k = 1, ...k̄ − 1, and Xk′

i 6= Xk′

j ,∀k′ = k̄, ...K |i = j
)

Pr
(

Xk
i = Xk

j ,∀k = 1, ...k̄, and Xk′

i 6= Xk′

j ,∀k′ = k̄, ...K
) .

Since it is not possible to compute Pr(i = j), we focus on ∆ (i, j) the increase in the

probability that i and j knowing that Xk
i = Xk

j ,∀k = 1, ...k̄ − 1 as compared to knowing

the reverse. Using (2), and after some computations and combinations, it comes:

∆ (i, j) = Πk=1,...k̄−1 βk × Ωk (i, j) (3)

with βk ≡
(1−εk)

εk and Ωk (i, j) ≡
(1−Pr(Xk

i =Xk
j ))

Pr(Xk
i =Xk

j )
. βk is the probability that any agent has

two different values of her kth variable through any two different identities she may take

divided by the reverse. Ωk (i, j) is the probability that the two ex ante agents i and j have

different observables divided by the reverse (irrespective to the fact that they are or are

not the same persons ex post). This term accounts for the frequency of occurrence of the

observables (having the same observable counts more when this observable is less frequent).

The similarity score thus fully integrates endogenously the frequency of occurrence of the

observables on i an j when they are identical through Ωk (i, j) and the propensity of ex

ante agents to change each of these variables through βk.

2.2 Thresholds and the transitivity of identities

Once the similarity index is defined, a threshold value of the similarity has to be estab-

lished. Below such threshold, two ex ante agents are to be declared as different agents

2This assumption, which has been introduced to simplify the exposure, could be relaxed easily. It

means that for instance the probability that someone changes his address from one invention to the other

is independent of the probability this person changes from one technological field to the other.
3For some variables (name, first name without spelling errors) we are inclined to think that ε

k = 0,

whereas for some others (address, technological field...), clearly ε
k

> 0.
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and above it they are assumed to be the same person ex post. As soon as such a threshold

∆̄ is defined, a transitivity issue arises.4 For instance, consider three ex ante agents z, w

and h and ∆ (z, w) > ∆ (z, h) > ∆̄ > ∆ (h, w). Then, ex ante agents z and w are ex post

considered as being the same person as well as z and h. If these two statements apply then

obviously, h and w are also the same person ex post by transitivity. That is if z, w ∈ Ch

and z, h ∈ Cj , then necessarily h = j since Cj ∩ Ch = ∅,∀j 6= h.

We thus need to improve the values of similarity scores ∆ (i, j) so as to take into

account that transitivity of identities. To do so, the following algorithm is proposed. It

recursively upgrades similarity scores when a transitive triplet of identities suggests so and

does so until one can not find anymore such a configuration in the data.

Algorithm 1 For all considered pairs of distinct ex ante agents i and j, we apply:

∆ (i, j) ←֓ max

(

∆(i, j); max
h∈I\{i,j}

min(∆(i, h); ∆(j, h))

)

recursively until one can not find any triplet of distinct ex ante agents h, i, j ∈ I, such

that:

∆(i, j) < min (∆(i, h); ∆(j, h)) .

Provided this algorithm is processed, to any threshold of the similarity index ∆̄ cor-

responds an unambiguous partition π of the ex ante agents (this is obvious from the stop

rule of the algorithm).

3 Data, estimation and results

3.1 Data

Our data are constituted of all European patents applications, one inventor of which

at least declared an address in (metropolitan) France, and the priority date of which is

between January 1977 and August 2003 included.5 All non metropolitan French inventors

4We shall see in the next section how such a threshold can be chosen on the basis of the minimization

of errors in a benchmark sample.
5These data are an extraction of the EP-INV database produced by CESPRI-Università Bocconi. For

more details on the data see Lissoni et al. (2006).
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of these patents are not considered. The dataset counts 122, 157 patents and 236, 824

inventor×patent occurrences. The latter set of observations represents our list of identities

or ex-ante inventors, I. The variables used for computing similarity scores are presented

in Table 1.

[Table 1, around here]

3.2 Homonymy

We are inclined to think that spelling errors are very limited in the French context. There-

fore we will not consider here the similarity of inventors with different names and first

names though our methodology also applies to such an issue. Therefore our empirical

exercise will only deal with the homonymy problem. The inventor’s name and first name

is the alphanumerical variable X1. Assuming no spelling error, then the probability that

any agent changes her name or first name is zero (ε1 = 0 and thus β1 → ∞).6 In the

mean time we still want to use the information of the relative frequencies of names and

first names since they significantly influence the probability that i and j are in fact the

same person. Therefore, we will compute :

∆̃ (i, j) =
1

β1
∆ (i, j) = Ω1 (i, j)Πk=2,...k̄−1β

kΩk (i, j) , (4)

as similarity scores instead of ∆ (i, j), and impose transitivity as exposed in Algorithm 1.

Avoiding computing β1 is fully consistent here, because in practice we will only compare

the similarity of agents i and j who have same name and first name.

3.3 The benchmark

A list of French faculty members were matched with the patents on the basis of the name

and first names of their inventors. Internet verification and phone calls were proceeded

to these faculty members so as to enquire whether they really invented the patents in

which an inventor with the same name and first name as theirs were mentioned. All in all,

reliable information were collected on 445 French scholars.7 Their positive and negative

6Assuming agents do not voluntaritly change their ID from time to time.
7We are indebt to the KEINS project and BETA at the University of Strasbourg for nicely letting us

use these data.
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declarations on whether they are or are not the inventors of these patents someone of the

same name and first name invented are transformed into assertions whether some ex ante

agent i and some other agent j who have the same name and first name are or are not

the same person. Such process gives us 4, 989 matches, among which 4, 567 are validated

matches (i = j) and 422 are incorrect matches (i 6= j). These matches and mismatches

of homonyms can be used as a reliable benchmark in order to infer the quality of any

assertion toward a matching of ex ante inventors. We can compute an error index, as

the share of positive errors ǫ1 (proportion of incorrectly predicted mismatches), the share

of negative errors ǫ2 (proportion of incorrectly predicted matches) as well as any linear

combinations of these two shares

φ (θ) = θǫ1 + (1− θ) ǫ2, (5)

with θ ∈ [0, 1] , which accounts for any weighting schemes of the willingness to avoid the

two types of errors. A threshold on ∆̃ (i, j) that would minimizes such value for any

weighting scheme θ is noted ∆̄ (θ).

3.4 Estimations

3.4.1 Initialization, recursive computations and convergence

Given the initial list of 236, 824 identities, we rely upon the name, the first name and the

full address information to obtain an initial partition π0 of identities.8 It counts 127, 605

inventors. That initial aggregation allows us to compute initial conditional probabilities

εk for each variable k (the frequency that, in two different identities, any agent keeps the

same value of variable Xk, divided by the probability of the reverse). First values of the

similarity scores ∆̃ (also applying the transitivity algorithm) are then computed for the

898, 682 couples of homonyms.9

It should be noticed that, in this first round, the εk are underestimated since identities

are not yet sufficiently aggregated in the “true” partition. Therefore we recursively process

8The full string reporting the city and the street address is considered. The probability that two persons

with exactly same name and first name have the same address (i.e. they live in the same building) can be

reasonably assumed to be equal to zero.
9Without relying on the location data at this stage because the address were used in defining the

identities and so the probability to move is here null by assumption.
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identities allowing to progressively determine the identities and the εk. This approach

allows us to minimize abusive aggregations of agents. At each stage, we rely upon the

benchmark to compute a threshold minimizing a “conservative” linear combination of

errors, that is giving significantly more weight to negative errors, setting θ = 0.2. In

the initial round, an even more conservative θ (θ = 0) is used to avoid negative errors

given that we still have low confidence in the computations of εk, provided also that the

information on the location of inventors has not yet been taken into account (see the

previous footnote).

Thus at each stage t, the partition of ex post agents obtained in the previous period,

πt, is considered. New conditional probabilities εk, new similarity scores and new thresh-

old ∆̄ (0.2) are computed. All pairs of agents the similarity score of which is above the

threshold are aggregated within elements of πt+1. That partition defines a new popula-

tion of ex post agents for the next stage. This process is repeated until it converges to a

partition π∗ which will constitute the final set of ex post inventors.

3.4.2 Results

Table 2 displays the recursive computations of the conditional probabilities and the par-

titions, which convergence to a stable εk and a partition π∗.

[Table 2, around here]

The first computed partition π1 counts 107, 615 agents. It is likely to not be suffi-

ciently aggregated given the very conservative strategy adopted in the initial step (θ = 0).

However, the process proves to converge quickly since the next step partition π2 already

corresponds to the equilibrium one.

Table 3 reports the different sources of the variance of the similarity index. In order

to compute those sources, there have been considered only values of ∆̃(i, j) unchanged by

transitivity algorithm.10 These values result of the actual similarity score calculated for

each of the variables and are thus the only ones really informative. The values reported in

the table show that the variance of the total score is affected mainly by the variance char-

acterizing the city, X3, and the applicant, X2, variables. These two considered together

10About one quarter of the similaity indexes are imposed by the transitivity algorithm.
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count for more than 40 per cent of the total similarity index variance. Then, the techno-

logical fields, X4, and citation links, X5, follow in the ranking. Therefore, city location is

the most important information for defining identities in our sample.

[Table 3, around here]

Figure 1 reports the value of the error index as a function of the threshold, for various

weights given to positive errors θ.11 As expected, when θ = 0, the error index is always

increasing with the chosen threshold: the highest the threshold, the less the number of

incorrectly predicted matches (negative errors). On the contrary, when θ = 1, the error

index is always decreasing with the threshold: the lower the threshold the less the number

of incorrectly predicted mismatches (positive errors). For 0 < θ < 1, the error index

decreases, reaches a minimum and then increases up to some limit. It appears that the

value of the threshold ∆̄ ≃ exp {14.65} corresponds to the minimal error index or a wide

range of θ. When θ = .2 (our preferred value), the error index is equal to .0189, that is

the weighted average number of errors among possible ones is less than two percent.

[Figure 1, around here]

4 Conclusion

This paper proposes a Bayesian methodology to treat the who’s who problem arising in

individual level data sets such as patent data. The basic idea is to estimate the probability

that two individuals are the same given some other observations. To do that, we rely upon

a Bayesian approach providing a method for estimating the probability that two identities

correspond to the same person. It relies on an estimation of the probabilities that ex

post agents (e.g. inventors) change their observables (e.g. technological subfield) from one

identity (e.g. invention occurrence) to the other. Doing so, we assign a similarity index to

each couple of ex ante individuals and, given a threshold, we identify ex-post identities (i.e.

the partition of the initial list of identities grouping together the ones which correspond

to the same person).

11The equilibrium partition and the corresponding similarity indexes have been considered to draw the

figure.
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To our knowledge, it represents the first attempt to give a theoretical basis to the

treatment of the who’s who problem. In particular, the proposed methodology is able to

overcome the main drawbacks of the approaches developed till now. First, our method-

ology takes in account the relative frequencies of each observation and of each variable.

Doing so, we are able to fully exploit all the information contained in the data. Sec-

ond, in computing the similarity index it relies on an endogenous procedures avoiding the

exogenous and arbitrary scoring methods adopted by previous contributes.

Moreover, we assess the methodology developed referring to the set of all French in-

ventors appearing on the EPO applications from 1978 to 2003. We define a recursive

algorithm that permits to identify a stable partition of ex-post inventors and, using a

benchmark dataset, provides also a measure of the weighted share of negative and positive

errors. Our preferred specification allows us to leave a weighted average number of errors

less than two percents of the potential ones.
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5 Tables and Figures

Variables # of modalities Entropy

X1 : same first name & name 95, 680 0.95

X2 : same assignee 22, 550 0.72

X3 : same city 11, 570 0.72

X4 : same IPC (6 digits) 5, 283 0.85

X5 : at least one citation link 158, 183 0.93

Table 1. The variables used to build the similarity scores, the number of different

groups of agents and normalized entropy indexes.

t #πt log∆̄ mean log∆̃ std. log∆̃ ε1 ε2 ε3 ε4 ε5

0 127,605 17.63 14.30 4.64 - 0.2190 - 0.6671 0.8716

1 107.415 12.38 23.28 6.55 - 0.2757 0.1906 0.6976 0.8818

2 102,376 12.38 23.28 6.55 - 0.2757 0.1906 0.6976 0.8819

3 102,376 -

Table 2. Convergence of the recursive computing of the ex post agents and the

conditional probabilities.

12



log ∆̃ X1 X2 X3 X4 X5

Variances 52.07 1.30 10.86 12.25 6.88 3.19

Table 3. The sources of the variance of the similarity indexes (only value not imposed

by transitivity algorithm are taken in account).

0
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i

10 20 30 40 50
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Figure 1. Computed values of the error index φ as the threshold of the similarity index

∆̄ increases, for different values of θ, 0.1 increments between its two bounds: θ = 0 (black

line, considers only negative errors, i.e. incorrectly predicted matches) and 1 (lightest grey

line, considers only positive errors, i.e. incorrectly predicted mismatches).
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