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Classification de variables qualitatives autour de variables latentes 

Résumé 

En classification, on s’intéresse habituellement à classifier les observations et non les variables. 
Cependant la classification de variables trouve tout son sens en réduction de dimension, pour la 
sélection de variables ou encore dans certaines applications (analyse sensorielle, biochimie, 
marketing, etc.). L'idée est alors de chercher des groupes de variables liées c'est-à-dire porteuses 
de la même information. Une fois que les variables sont organisées en groupes homogènes telles 
que les variables au sein d’une même classe sont similaires, il est alors possible de sélectionner 
dans chaque classe une variable ou de résumer chaque classe de variables par une variable 
synthétique, encore appelée variable latente. Plusieurs approches ont été spécifiquement 
développées pour la classification de variables quantitatives. Cependant, pour des données 
qualitatives, peu de méthodes ont été proposées. Dans cet article, nous étendons le critère proposé 
par Vigneau et Qannari (2003) dans leur méthode CLV (« Clustering around Latent Variables ») 
pour la classification de variables quantitatives au cas de données qualitatives. La variable 
latente d'une classe maximise l'homogénéité de la classe, définie comme la somme des rapports de 
corrélation entre les variables qualitatives de la classe et cette variable latente quantitative. Nous 
montrons que cette variable latente peut être obtenue par une Analyse des Correspondances 
Multiples des variables de la classe. Plusieurs algorithmes de classification utilisant le même 
critère d'homogénéité sont alors définis : algorithme de type nuées dynamiques, classification 
hiérarchique ascendante et descendante. Enfin ces différentes approches sont utilisées dans une 
étude de cas réelle concernant la satisfaction de navigants plaisanciers.  

Mots-clés : classification de variables qualitatives, rapport de corrélation, algorithme des nuées 
dynamiques, classification hiérarchique 

Clustering of categorical variables around latent variables 

Abstract 

In the framework of clustering, the usual aim is to cluster observations and not variables. 
However the issue of variable clustering clearly appears for dimension reduction, selection of 
variables or in some case studies (sensory analysis, biochemistry, marketing, etc.). Clustering of 
variables is then studied as a way to arrange variables into homogeneous clusters, thereby 
organizing data into meaningful structures. Once the variables are clustered into groups such that 
variables are similar to the other variables belonging to their cluster, the selection of a subset of 
variables is possible. Several specific methods have been developed for the clustering of 
numerical variables. However concerning categorical variables, much less methods have been 
proposed. In this paper we extend the criterion used by Vigneau and Qannari (2003) in their 
Clustering around Latent Variables approach for numerical variables to the case of categorical 
data. The homogeneity criterion of a cluster of categorical variables is defined as the sum of the 
correlation ratio between the categorical variables and a latent variable, which is in this case a 
numerical variable. We show that the latent variable maximizing the homogeneity of a cluster can 
be obtained with Multiple Correspondence Analysis. Different algorithms for the clustering of 
categorical variables are proposed: iterative relocation algorithm, ascendant and divisive 
hierarchical clustering. The proposed methodology is illustrated by a real data application to 
satisfaction of pleasure craft operators. 

Keywords: clustering of categorical variables, correlation ratio, iterative relocation algorithm, 
hierarchical clustering 
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Abstract

Clustering of variables is studied as a way to arrange variables into homogeneous clusters, thereby

organizing data into meaningful structures. Once the variables are clustered into groups such that vari-

ables are similar to the other variables belonging to their cluster, the selection of a subset of variables is

possible. Several specific methods have been developed for the clustering of numerical variables. However

concerning categorical variables, much less methods have been proposed. In this paper we extend the

criterion used by Vigneau and Qannari (2003) in their Clustering around Latent Variables approach for

numerical variables to the case of categorical data. The homogeneity criterion of a cluster of categorical

variables is defined as the sum of the correlation ratio between the categorical variables and a latent

variable, which is in this case a numerical variable. We show that the latent variable maximizing the

homogeneity of a cluster can be obtained with Multiple Correspondence Analysis. Different algorithms

for the clustering of categorical variables are proposed: iterative relocation algorithm, ascendant and

divisive hierarchical clustering. The proposed methodology is illustrated by a real data application to

satisfaction of pleasure craft operators.

Keywords: clustering of categorical variables, correlation ratio, iterative relocation algorithm, hierar-

chical clustering.

1 Introduction

Principal Component Analysis (PCA) and Multiple Correspondence Analysis (MCA) are appealing statis-

tical tools for multivariate description of respectively numerical and categorical data. Rotated principal

components fulfill the need to get more interpretable components. Clustering of variables is an alternative

since it makes it possible to arrange variables into homogeneous clusters and thus to obtain meaningful

structures. From a general point of view, variable clustering lumps together variables which are strongly

related to each other and thus bring the same information. Once the variables are clustered into groups

such that attributes in each group reflect the same aspect, the practicioner may be spurred on to select one

variable from each group. One may also want to construct a synthetic variable. For instance in the case of

quantitative variables, a solution is to realize a PCA (see Jolliffe, 2002) in each cluster and to retain the first

principal component as the synthetic variable of the cluster. Another advantage that may be gained from the

clustering of variables relates to the selection of a subset of variables. It is an alternative to procedures for

discarding or selecting variables based on a statistical criterion that have been proposed by Jolliffe (1972),
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Mc Cabe (1984), Krzanowski (1987), Al-Kandari and Jolliffe (2001) or Guo et al. (2002) among others. The

selection of a subset of variables is the aim of a lot of research in several areas of application. For instance in

descriptive sensory profiling, this strategy of analysis can be used to reduce a list of attributes by selecting

relevant and non redundant attributes. In biochemistry clustering genes based upon their expression patterns

allows to predict gene function. For preference studies when putting on the market new products, clustering

of variables is also helpful to detect the existence of segments among the panel of consumers. Variable

clustering can also be useful for association rules mining. Plasse et al. (2007) illustrate on an industrial

application from the automotive industry the help of building homogeneous clusters of binary attributes for

the discovering of relevant association rules mining. A conjoint use of variable clustering and Partial Least

Squares (PLS) structural equations modeling is presented in Stan and Saporta (2005) in which clustering

of variables is used to fulfill at best the underlying hypothesis in PLS approach of unidimensionality of the

blocks of variables.

A simple and frequently used approach for variable clustering is to construct first a matrix of dissimilarities

between the variables and then to apply classical cluster analysis methodology devoted to objects (units)

which are able to deal with dissimilarity matrices (single, complete, average linkage hierarchical clustering

or distance-based k-means). Partitioning Around Medoids can also deal with dissimilarity as input data

(see Kaufman and Rousseeuw, 1990). Methods dealing only with numerical data like Ward or k-means

among others can also be applied on the numerical coordinates obtained from Multidimensional Scaling of

a previously built dissimilarity matrix.

Concerning quantitative variables, many authors have proposed different dissimilarity measures. Let us

remind here some of these coefficients. Correlation coefficients (parametric or nonparametric) can be con-

verted to different dissimilarities depending if the aim is to lump together correlated variables regardless of

the sign of the correlation or if a negative correlation coeffcient between two variables shows disagreement

between them. Soffritti (1999) defines a monotonous multivariate association measure that takes into ac-

count the within correlation and the number of variables of each group. A distance based on Escoufier’s

operator which takes the correlations as well as the variances of the variables into consideration has also

been developped by Qannari et al. (1998). Note that this distance is also extended to the case of categorical

variables and to a mixture of both types of data.

For categorical variables, many association measures can be used as χ2, Rand, Belson, Jaccard, Sokal and

Jordan among others. Some transformations are then in order to bring the coefficients into dissimilarity or

distance measures. We can cite for instance the work of Abdallah and Saporta (1998) who consider various

association measures and give the definition of a threshold beyond which two variables can be considered as

linked.

Some specific approaches have also been developed for the clustering of variables. Once again for quanti-

tative data, several specific methods have been proposed. We can cite among others the approach of Hastie

et al. (2000) in genome biology or the recent work of Vichi and Saporta (2009), which aims at a simultaneous

clustering of objects and a partitioning of variables. However the most famous one remains the VARCLUS

procedure of SAS software. Two other interesting approaches that were independently proposed are Cluster-

ing around Latent Variables (CLV), introduced by Vigneau and Qannari (2003), and Diametrical Clustering
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of Dhillon et al. (2003). When the aim is to lump together correlated variables regardless of the sign of the

correlation, both methods aim at maximizing the sum over all clusters of the squared correlations between

the variables and a latent variable.

Let us now tackle the issue of specific methods developed in view of clustering of categorical variables.

Surprisingly, it has received much less attention than the numerical case. As far as we know, only Likelihood

Linkage Analysis proposed by Lerman (1993) is a specific method devoted to clustering of variables that can

deal with both numerical and categorical data.

In this paper we propose specific methods for the clustering of categorical variables. The homogeneity

criterion of a cluster is not simply a distance based criterion but an extension of that used in CLV (Vigneau

and Qannari, 2003). It is equal to the sum of the correlation ratio between the categorical variables and

a latent variable, which is in this case a numerical variable. We show that the latent variable maximizing

the homogeneity of a cluster is the first principal component obtained by MCA (see Greenacre and Blasius,

2006) of the data of the cluster.

The overview of the paper is as follows. In Section 2, a specific measure of the homogeneity of a

cluster of categorical variables is given and a partitioning criterion is defined. Section 3 is devoted to

different clustering algorithms optimizing this specific criterion: iterative relocation algorithm, ascendant

and divisive hierarchical clustering. In Section 4, a real data application relative to satisfactory of pleasure

craft operators is treated. First the proposed hierarchical clustering algorithm is applied on a real data set.

Then an empirical comparison of the performances of the different proposed algorithms is presented. Finally

in Section 5, some concluding remarks and perspectives are given.

2 A correlation ratio based partitioning criterion for categorical

variables

Let X = (xij) be a data matrix of dimension (n, p) where a set of n objects are described on a set of p

categorical variables. Let V = {x1, . . . ,xp} be the set of the p columns of X, called for seek of simplicity

categorical variables.

Homogeneity criterion of a cluster. Let C ⊂ V be a cluster of categorical variables and y be a vector

of Rn called latent variable. The homogeneity criterion of C measures the adequacy between the variables

in C and y:

S(C) =
∑
xj∈C

η2(xj ,y), (1)

where η2(xj ,y) stands for the correlation ratio between the categorical variable xj and a numerical latent

variable y. This ratio is equal to the between group sum of squares of y in the groups defined by the

categories of xj , divided by the total sum of squares of y: η2(xj ,y) =

∑
s∈Mj

ns(ȳs − ȳ)2∑n
i=1(yi − ȳ)2

, with ns the

frequency of category s,Mj the set of categories of xj and ȳs the mean value of y calculated on the objects

belonging to category s. The correlation ratio belongs to [0, 1] and measures the link between the categorical

variable xj and a numerical latent variable y.
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Definition of the latent variable of a cluster. In cluster C, the latent variable y is defined to maximize

the homogeneity criterion S(C):

y = arg max
u∈Rn

∑
xj∈C

η2(xj ,u). (2)

Result 1. The latent variable y of C is the first normalized eigenvector of F̃F̃t, with F̃ defined in (3).

Proof. As η2(xj ,u) = η2(xj , αu), for any nonnull real α, the optimization problem (2) has an infinite set of

solutions. We choose here to add the constraint utu = 1. To define the matrix F̃ we need to introduce usual

notations from the theory of MCA. We can code the data of cluster C using indicator matrix G of dimension

n× q, with q the number of categories of the variables in C, in which each category level is given a separate

column and an entry of 1 indicates the relevant level of the category. The indicator matrix G is divided by its

grand total npC , where pC designates the number of variables in C, to obtain the so-called “correspondence

matrix” F = 1
npC

G, so that 1t
nF1q = 1, where, generically, 1i is an i × 1 vector of ones. Furthermore, the

row and column marginals define respectively the vectors of row and column masses r = F1q and c = Ft1n.

Let Dr = diag(r) and Dc = diag(c) be the diagonal matrices of these masses. In this particular case, the

ith element of r is fi. = 1
n and the sth element of c is f.s = ns

npC
. We can now define the matrix

F̃ = D−1/2
r (F− rct)D−1/2

c . (3)

Let us first show that if ū = 0 and var(u) = 1
n , we have utF̃F̃tu = 1

pC

∑
xj∈C η

2(xj ,u). Remembering from

the definition of F that fis = gis

npC
, the general term of D−1/2

r (F−rct)D−1/2
c is then f̃is =

√
ns
√

pC
ns

( gis

pC
− ns

npC
).

It follows that
∑n

i=1 f̃isui =
√

ns√
pC
ūs, where ūs is the mean value of u calculated on the objects belonging to

category s. Then we get

utF̃F̃tu =
1
pC

∑
xj∈C

∑
s∈Mj

nsū
2
s =

1
pC

∑
xj∈C

∑
s∈Mj

ns

n (ūs − 0)2

1
n

=
1
pC

∑
xj∈C

η2(xj ,u). (4)

Moreover as the first normalized eigenvector of F̃F̃t maximizes utF̃F̃tu with respect to u ∈ Rn under the

constraint utu = 1, it is a solution of (2). Since it is normalized, its variance is equal to 1
n . Then we have to

check that it is centered. If F̃ is supposed to be of rank r, the Singular Value Decomposition (SVD) of F̃ is

F̃ = UΛVt, where Λ contains the r nonnull singular values of F̃tF̃ and F̃F̃t sorted in decreasing order, U

(resp. V) is the matrix whose columns are the normalized eigenvectors of F̃F̃t (resp. F̃tF̃) associated with

the nonnull eigenvalues. Thus U = F̃VΛ−1 and then the first normalized eigenvector of F̃F̃t, as a linear

combination of the columns of F̃ which are centered, is in turn centered, which completes the proof.

Result 2. The latent variable y is colinear with the first principal component issued from MCA of the row

profiles of the data matrix of C.

Proof. MCA is defined here as the application of weighted PCA to the centered row profiles matrix D−1
r (F−

rct) with distances between profiles measured by the chi-squared metric defined by D−1
c . The n× r matrix

Ψ of row principal coordinates is then defined by Ψ = D−1/2
r F̃V, with the expression of F̃ given in (3).

From the SVD of F̃, we get Ψ = D−1/2
r UΛ, thereby implying that the latent variable, defined as the first

normalized eigenvector of F̃F̃t, is colinear with the first principal component obtained with MCA.
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Partitioning criterion. We denote by PK = {C1, . . . , CK} a partition of V into K clusters and by Y =

{y1, . . . ,yK} a set of K latent variables. The paper addresses the problem of partitioning a set of p variables

into K disjoint clusters in which variables are similar to the other variables belonging to their cluster and

dissimilar to variables that belong to different clusters. The partitioning criterion concentrates on maximizing

the cohesion (homogeneity) of the clusters in the partition:

H(PK) =
K∑

k=1

S(Ck). (5)

with S(Ck) defined in (1). In the next section, we propose different clustering algorithms using this criterion.

3 Different clustering algorithms

Given criterion (5) measuring the homogeneity of a partition of a set of variables into K disjoint clusters,

there are different possible clustering algorithms for maximizing this criterion. First we describe an iterative

relocation algorithm, then two hierarchical algorithms are proposed: ascendant and divisive.

Iterative relocation algorithm. A first solution to search for optimal partitions of the variables is given

by an iterative algorithm in the course of which the variables are allowed to move in and out of the groups

at the different stages of the algorithm achieving at each stage an increase of criterion (5). This partitioning

algorithm runs as follows:

(a) Initialization step: The specification of this step may be reached by different ways. The first solution

consists in computing the first K principal components issued from MCA of the centered row profiles

matrix of X. As has been described in Section 2, each component can play the role of the latent

variable of a cluster with itself as single member. Then we go to step (c) for the allocation step.

This initialization can be coupled with a rotation to start with a better partition as in the VARCLUS

procedure. We can use for instance the planar rotation iterative procedure for rotation in MCA

proposed by Chavent et al. (2009). By doing this, the values of the correlation ratio between the

variables and the latent variables are either large or small and the allocation is easier and then may be

better. Another solution is to select randomly K variables of V and to apply MCA on the row profiles

obtained with the data provided by each single variable in order to get K latent variables. These latent

variables define at the beginning K clusters each containing only one member. Then we go to step

(c). As it is well-known that iterative relocation algorithms provide a local optimum, the proposed

iterative relocation algorithm is run several times, with multiple random initializations and we retain

the best partition in sense of our partitioning criterion (5).

(b) Representation step: For all k in 1, ...,K, we compute the latent variable yk of Ck as the first normalized

eigenvector of F̃kF̃t
k, where F̃k is defined in (3) for a generic cluster.

(c) Allocation step: Each variable is then assigned to the cluster which latent variable is closest to it in

sense of correlation ratio. For all j in 1, ..., p, find ` such that ` = arg max
k=1,...,K

η2(xj ,yk). Let Ck be the

previous cluster of xj . Then if ` 6= k, C` ← C` ∪ {xj} and Ck ← Ck\{xj}.

(d) If nothing changes in step (c) then stop, else return to step (b).
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An empirical comparison of the efficiency of the iterative relocation algorithm according to the initial-

ization step (a) is provided in Section 4.

Ascendant hierarchical approach. We propose herein a hierarchical clustering strategy based on the

same criterion (5). First from Result 1, this criterion can be rewritten as follows:

H(PK) =
K∑

k=1

pkλk, (6)

where pk is the number of variables in Ck and λk is the largest eigenvalue of matrix F̃kF̃t
k, with F̃k defined

in (3) for a generic cluster.

In the ascendant hierarchical clustering algorithm, one recursively merges two clusters, starting from the

stage in which each variable is considered to form a cluster by itself to the stage where there is a single

cluster containing all variables. Given the current partition PK = {C1, . . . , CK}, two clusters are merged in

order to find a partition PK−1 which contains K−1 clusters and optimizes the chosen cohesion measure (6).

More precisely because

H(PK−1) = H(PK)− (S(Cl) + S(Cm)− S(Cl ∪ Cm))︸ ︷︷ ︸
h(Cl∪Cm)

, (7)

the merging of two clusters Cl and Cm results in a variation of criterion (6) given by:

h(Cl ∪ Cm) = λl + λm − λl∪m. (8)

We can prove (see Appendix) that:

λl∪m 6 λl + λm, (9)

which implies that the merging of two clusters at each step results in a decrease in criterion (6). Therefore

the strategy consists in merging the two clusters that result in the smallest decrease in the cohesion measure.

Divisive hierarchical approach. Divisive hierarchical clustering reverses the process of agglomerative

hierarchical clustering, by starting with all variables in one cluster, and successively dividing each cluster

into two sub-clusters. Given the current partition PK = {C1, . . . , CK}, one cluster Cl is split in order to

find a partition PK+1 which contains K + 1 clusters and optimizes the chosen adequacy measure (6). More

precisely, at each stage, the divisive hierarchical clustering method

• splits a cluster Cl into a bipartition (Al, Āl);

• chooses in the partition PK the cluster Cl to be split in such a way that the new partition PK+1 has a

maximum cohesion measure.

The problem of how to split a cluster. In order to split optimally a cluster Cl one has to choose the

bipartition (Al, Āl), amongst the 2pl−1 − 1 possible bipartitions of this cluster of pl variables (with pl the

number of variables in Cl), which maximizes criterion (6). It is clear that such complete enumeration provides

a global optimum but is computationally prohibitive. The iterative relocation algorithm proposed above can

then be used to get a partition into two clusters which is locally optimal for criterion (6).

Selecting the cluster to be split. In divisive clustering, the set of clusters obtained after K − 1 divisions

is a hierarchy HK whose singletons are the K clusters of the partition PK obtained in the last stage of the
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procedure. Because the resulting hierarchy can be considered as a partial hierarchy halfway between the

top and bottom levels, it is referred to as an upper hierarchy (Mirkin, 2005). This upper hierarchy is then

indexed by h so that in the dendrogram the height of a cluster Cl split into two sub-clusters Al and Āl is:

h(Cl) = S(Āl) + S(Al)− S(Cl).

When the divisions are continued until giving singleton clusters, all of the clusters can be systematically

split and the full hierarchy Hn can be indexed by h. When the divisions are not continued down to Hn, the

clusters are not systematically split: in order to have the dendrogram of the upper hierarchy HK built at the

“top” (the K − 1 largest) levels of the dendrogram of Hn, a cluster represented higher in the dendrogram of

Hn has to be split before the others. The proposed procedure then chooses to split the cluster Cl with the

maximum value h(Cl). Consequently because

H(PK+1) = H(PK) + h(Cl)

maximizing h(Cl) ensures that the new partition PK+1 = PK ∪ {Al, Āl} − {Cl} has a maximum cohesion

measure.

Remark. The index h of the hierarchy in (8) is well positive (see Appendix for the proof) but we have not

yet demonstrated that it is a monotone increasing function, that is ∀A,B ∈ H, if A ⊂ B, then h(A) ≤ h(B).

Note that in practice, we have never observed inversion phenomenom.

4 Real data application

In the subsequent clustering of categorical variables is applied to a real data set. A user satisfaction survey

of pleasure craft operators on the “Canal des Deux Mers”, located in South of France, was carried out by

the public corporation “Voies Navigables de France” responsible for managing and developing the largest

network of navigable waterways in Europe. This study was realized from June to December 2008. Pleasure

craft operators were asked their opinion about numerous questions with categorical answers, thus providing

p = 85 categorical variables, each having two or three categories of response. The objective of the present

case study is to examine the redundancy among variables in order to select a subset of attributes to be

used in further studies saving time for the respondents, money for the edition of the questionnaires and the

statistical treatment of the data.

First an application is reached on a reduced1 data set to illustrate the interpretation of the results

obtained with the proposed ascendant hierarchical clustering algorithm. Then the different algorithms of

clustering (iterative relocation algorithm and its various initializations, ascendant and divisive hierarchical

clustering) are applied on the complete data set to compare empirically the advantages of each approach.

4.1 Illustration on a reduced data set

We focus here on fourteen categorical variables described in Table 1. After removal of individuals with

missing values for some of the questions, the sample size is n = 709 pleasure craft operators.
1We only consider here a subset of 14 variables over the 85 categorical variables.
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Name of the variable Description of the variable Categories

x1=“sites worth visiting” What do you think about information you were provided

with concerning sites worth visiting?

x2=“leisure activity” How would you rate the information given on leisure

activity?

x3=“historical canal sites” What is your opinion concerning tourist information

on historical canal sites (locks, bridges, etc.)?

satisfactory, unsatisfactory,

no opinion

x4=“manoeuvres” At the start of your cruise, were you sufficiently aware

of manoeuvres at locks?

x5=“authorized mooring” At the start of your cruise, were you sufficiently aware

of authorized mooring?

x6=“safety regulations” At the start of your cruise, were you sufficiently aware

of safety regulations?

yes, no

x7=“information on services” Please give us your opinion about signs you encoun-

tered along the way concerning information regarding

services.

satisfactory, unsatisfactory

x8=“number of taps” What do you think about number of taps on your trip? sufficient, unsufficient

x9=“cost of water” The general cost of water is ...

x10=“cost of electricity” The general cost of electricity is ...

inexpensive, average,

expensive

x11=“visibility of electrical outlets” What is your opinion of visibility of electrical outlets?

x12=“number of electrical outlets” What do you think about number of electrical outlets on

your trip?

sufficient, unsufficient

x13=“cleanliness” How would you describe the canal’s degree of cleanli-

ness?

clean, average, dirty

x14=“unpleasant odours” Were there unpleasant odours on the canal? none, occasional, frequent

Table 1: Description of the 14 categorical variables.

The ascendant hierarchical approach described in Section 3 is applied. Figure 1 shows the resulting

dendrogram. The evolution of the aggregation criterion h is given in Figure 2. This figure should be read

as a scree-graph. The aggregation criterion jumped when passing from 5 clusters to 4 clusters. This should

suggest that “different” clusters are being merged and therefore the partition into 5 clusters is retained.

The choice of the number of clusters can also be based on practical considerations such as the easiness of

interpretation. Here the partition into 5 clusters provides satisfactory interpretable results. In a subsequent

stage, the iterative relocation algorithm is performed with K = 5 clusters with as initial partition the one

derived from the hierarchical procedure. In this case study, this complement stage leads to no improvement

of criterion (5) as no variable changes membership.

Table 2 describes the 5-clusters partition of the 14 categorical variables. For instance cluster C4 contains

variables dealing with the information on the use of the canal: sites worth visiting, leisure activity and

historical canal sites. The value in brackets shows the correlation ratio between a variable of the cluster

and the corresponding latent variable. We see that the variables in a cluster are highly related with their

latent variable. Table 3 gives the values of the Tschuprow coefficient between the variables of cluster C4 =

{x1,x2,x3} and the remaining ones. We see that the variables are more related to the other variables

belonging to their cluster than to variables that belong to different clusters. Then an advantage which may

be gained from the clustering of variables relates to the selection of a subset of variables. For instance in this

case study we could reduce the number of questions in the survey by selecting one variable in each cluster

using the correlation ratio values given in Table 2.
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Figure 1: Dendrogram of the ascendant hierarchical clustering of the 14 categorical variables.

Figure 2: Evolution of the aggregation criterion h of the ascendant hierarchical clustering of the 14 categorical

variables.

4.2 Empirical study and comparison of the different proposed clustering algo-

rithms

We focus here on all the p = 85 categorical variables from the survey.
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C1: environment C2: navigation rules C3: cost of services

cleanliness (0.68) manoeuvres (0.66) cost of water (0.84)

unpleasant odours (0.68) authorized mooring (0.71) cost of electicity (0.84)

safety regulations (0.69)

C4: use of the canal C5: available services

sites worth visiting (0.71) information on services (0.40)

leisure activity (0.69) number of taps (0.59)

historical canal sites (0.46) visibility of electrical outlets (0.65)

number of electrical outlets (0.71)

Table 2: Partition of the 14 categorical variables into 5 clusters (correlation ratio between a variable of the

cluster and the corresponding latent variable).

x1 x2 x3 x4 x5 x6 x7 x8 . . . x14

x1 1.00 0.36 0.24 0.09 0.10 0.11 0.08 0.06 . . . 0.05

x2 0.36 1.00 0.20 0.10 0.11 0.13 0.11 0.07 . . . 0.03

x3 0.24 0.20 1.00 0.02 0.04 0.05 0.11 0.08 . . . 0.05

Table 3: Values of the Tschuprow coefficient between the variables of C4 and the remaining ones.

The proportion of explained cohesion. The clustering objective is formally expressed as the max-

imization of criterion (5) which can be perceived as a cohesion measure of the clusters in the partition.

The cohesion criterion of a given partition PK is given by H(PK) =
∑K

k=1

∑
xj∈Ck

η2(xj ,yk), with yk the

latent variable of cluster Ck. Similarly the total cohesion of a set V of p variables can be measured by

H(V) =
∑p

j=1 η
2(xj ,y) with y the latent variable (or total representative) of V. The cohesion measure is

equal to H(V) for the single cluster (V) and to p for the singleton partition. Hence the quality of the parti-

tions PK built by the three methods from the same set of variables V, can be ranked using the proportion of

gain in cohesion, that is the ratio of the gain obtained with PK to the maximum gain that can be reached

with the singleton partition:

E(PK) =
H(PK)−H(V)
p−H(V)

.

This lies between 0% for the single cluster (V) and 100% for the singleton partition. Because E increases with

the number K of clusters of the partition, it can be used only to compare partitions having the same number

of clusters. In the following, we assume that a partition PK is better than a partition P ′K if E(PK) > E(P ′K).

We will call E(PK) the proportion of explained cohesion by the partition PK .

Different initializations of the iterative relocation algorithm. As has already been pointed, the

iterative relocation algorithm involves an initialization step that can be specified for instance by the three

techniques proposed in Section 3. The aim of the following is to study the impact of the initialization

on the quality of the obtained partition. Table 4 gives the proportion E(PK) of explained cohesion for

partitions from K = 2 to 20 clusters. Each column displays this proportion obtained respectively with the

initialization via the first K principal components, the first K rotated principal components and the best of

N = 30 random initializations.

The partitions obtained with the initialization via the rotated principal components are always better

(except for K = 5 where it is almost equal) than those obtained with the principal components. Thus the

complement step of rotation seems to be efficient. For the third column, the iterative relocation algorithm is
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K K principal components K rotated principal components N = 30 random initializations

2 3.19 3.39 1.48

3 5.95 6.40 5.25

4 8.03 8.87 8.57

5 10.55 10.13 11.60

6 11.86 12.48 14.62

7 14.29 14.94 17.13

8 15.70 17.74 18.87

9 17.85 18.24 21.22

10 19.67 20.87 23.83

11 21.26 22.18 25.80

12 22.46 24.66 27.76

13 23.69 26.31 29.16

14 24.89 27.68 31.41

15 26.47 28.21 33.51

16 27.66 29.71 35.33

17 29.46 31.16 37.05

18 29.92 32.56 38.21

19 31.46 34.16 40.53

20 32.68 35.74 42.39

Table 4: Iterative relocation algorithm: comparison of the proportion E(PK) of explained cohesion with

various initializations.

executed N = 30 times with different random initial seeds and the best solution in sense of the partitioning

criterion (5) is retained. The partitions obtained with the rotated principal components are better up to

4 clusters and the iterative relocation algorithm with random initializations takes the lead from 5 clusters

onwards. Moreover the gain in the proportion of explained cohesion increases as the number of clusters

increases (18.6%=(42.39-35.74)/35.74 for 20 clusters versus 14.5%=(11.60-10.13)/10.13 for 5 clusters). Note

that one possible explanation for the worse results of the multiple random initializations is probably that

there is no strong structure in the data for a small number K of clusters so that the draw of some random

initial seeds does not provide good partitions. As a rule concerning the iterative relocation methodology,

running the algorithm several times with different initial partition in each run seems to be a satisfactory

strategy.

Comparison of the different approaches. Now, we compare the results of the iterative relocation

algorithm with multiple random initializations, which provides the best partitions in sense of E(PK), with

ascendant and divisive hierarchical clustering.

Comparing the first two columns of Table 5, we see that the ascendant hierarchical clustering is more

efficient than the divisive one. A possible explanation is that the agglomerative algorithm is “stepwise

optimal”: at each step, the amalgamation chosen is the best (in terms of the specified clustering criterion)

that can be made at that time. However one reason for having worse results for the divisive approach is

probably the way of splitting a cluster into two sub-clusters. This is reached by iterative relocation algorithm

(with N = 30 multiple random initializations) and thus the bipartition obtained may not be optimal, thus

altering the quality of the hierarchy built with the divisive clustering.

Then we compare the results obtained with the ascendant hierarchical procedure with those reached with

the iterative relocation algorithm (with N = 30 random initial seeds). The latter always provides better
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K ascendant hierarchical clustering divisive hierarchical clustering iterative relocation algorithm ascendant hierarchical algorithm

(N = 30 random initializations) + iterative relocation

2 3.01 2.58 1.48 3.26

3 5.73 4.51 5.25 6.18

4 8.19 7.31 8.57 9.05

5 10.63 9.31 11.60 11.62

6 12.92 10.95 14.62 13.99

7 15.13 12.36 17.13 15.99

8 17.19 13.61 18.87 17.98

9 19.23 14.92 21.22 19.83

10 21.24 16.62 23.83 21.88

11 23.09 18.62 25.80 23.67

12 24.93 19.72 27.76 25.45

13 26.72 21.14 29.16 27.35

14 28.48 22.61 31.41 29.07

15 30.16 23.87 33.51 30.73

16 31.78 25.40 35.33 32.03

17 33.38 26.73 37.05 33.63

18 34.92 28.09 38.21 35.05

19 36.45 29.38 40.53 36.54

20 37.94 30.95 42.39 38.03

Table 5: Comparison of the proportion E(PK) of explained cohesion with different algorithms of clustering.

partitions in sense of the cohesion measure (5), except as seen previously for a small number of clusters

(K = 2, 3). Once again the gain in the proportion of explained cohesion increases as the number of clusters

increases (11.2% for 20 clusters versus 4.6% for 4 clusters). However one may prefer the hierarchical technique

which has the advantage to build a hierarchy of nested partitions of the variables and then may be beneficial

for the interpretation of the results and the choice of a number K of clusters.

We also propose in the fourth column of Table 5 to complement the ascendant hierarchical clustering by

the iterative relocation algorithm with as initial partition the one derived from the hierarchical procedure. For

a given partition PK this step aims at improving criterion (5) by allowing variables to change membership.

Thus for each number of clusters K = 2, . . . , 20, we see that the new partitions obtained are better than the

initial ones (first column). However the iterative relocation algorithm (with N = 30 random initializations)

takes the lead from K = 6 clusters onwards.

5 Concluding remarks

This paper proposes an extension of an existing criterion for the clustering of numerical variables (Vigneau

and Qannari, 2003) to the case of categorical data. The partitioning criterion measuring the cohesion of

the clusters in the partition is based on correlation ratio between the categorical variables of the cluster

and a numerical latent variable. The latent variable of a cluster which optimizes the homogeneity criterion

of a cluster is computed from MCA. Several algorithms for the clustering of categorical variables using

the proposed partitioning criterion are described (iterative relocation algorithm, ascendant and divisive

hierarchical clustering).

The results obtained with the proposed approach are illustrated and interpretated on a real data set.

An empirical comparison of the different clustering approaches is also derived on this data set. We see on
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the proposed case study that the partitioning criterion may have several local optima. Then concerning

the iterative relocation algorithm, the multiple random intitializations provides the best partitions in sense

of proportion of explained cohesion. The divisive hierarchical clustering suffers from multiple local optima

of the iterative relocation algorithm when splitting a cluster into two sub-clusters and then provides worse

results than the ascendant hierarchial clustering or iterative relocation algorithm. Surprisingly the iterative

relocation algorithm provides better results than the ascendant hierarchical clustering complemented by

an iterative relocation of the variables. However one advantage of the hierarchical procedure is the easier

interpretability of the results since it produces a hierarchy of nested partitions of the variables. The proposed

algorithms have been implemented in R and source codes are available from the authors.

Furthermore a classical approach in data mining consists in carrying out a MCA and subsequently

applying a clustering algorithm on the component scores of the objects, thereby using the first few components

only. However DeSarbo et al. (1990), De Soete and Caroll (1994) and Vichi and Kiers (2001) warn against

this approach, called “tandem analysis”, because MCA may identify dimensions that do not necessarily

contribute much to perceiving the clustering structure in the data and that, on the contrary, may obscure or

mask the taxonomic information. Cluster analysis of variables is then an alternative technique as it makes it

possible to organize the data into meaningful structures. Therefore the construction of latent variables may

be more efficient that the classical MCA step.

One remaining point to study is the monotony of the proposed partitioning criterion. Another interesting

aspect would be to compare the computational complexity of the different proposed algorithms. Concerning

future prospects, the choice of the number of clusters with a bootstrap approach, consisting in generating

multiple data replications of the data set and examining if the partition is stable, is currently under study.

Research will also be undertaken on the treatment of missing values to avoid, as has been made in the

presented real data application, deleting individuals who have returned questionnaires with the answers to

some questions not completed.
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Appendix: Proof of inequality (9)

We have

λl∪m = max
u∈Rn

utu=1

{utF̃l∪mF̃t
l∪mu}

= max
u∈Rn

utu=1

{utF̃lF̃t
lu + utF̃mF̃t

mu}

≤ max
u∈Rn

utu=1

{utF̃lF̃t
lu}+ max

u∈Rn

utu=1

{utF̃mF̃t
mu}

= λl + λm.

where the definition of F̃ is given in (3) for a generic cluster.
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