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Rotation en Analyse des Correspondances Multiples :  
une procédure de rotation planaire itérative 

Résumé 

L’Analyse des Correspondance Multiples (ACM) est une méthode d’analyse multidimensionnelle 
bien connue pour la description d’un jeu de données qualitatives. Comme en Analyse en 
Composantes Principales (ACP) ou en Analyse en Facteurs, la rotation peut être utilisée pour 
simplifier la lecture des résultats numériques. L’idée est d’appliquer une matrice de rotation à la 
matrice des composantes principales afin de voir se former des groupes de variables et interpréter 
plus facilement les composantes principales. En ACP, le critère le plus connu est probablement le 
critère varimax proposé par Kaiser (1958). D’autre part, Kiers (1991) s'est intéressé à ce 
problème dans le cadre de la méthode PCAMIX qu'il a développée pour l'analyse de données 
mixtes (qualitatives et quantitatives). Cette méthode inclut ainsi comme cas particuliers l'ACP et 
l'ACM. Il propose un critère de rotation qui dans le cas purement qualitatif est basé sur les 
rapports de corrélation entre les variables qualitatives et les composantes principales. Il utilise 
l'algorithme de De Leeuw et Pruzansky (1978) pour optimiser ce critère. Dans cet article, nous 
utilisons ce même critère de rotation et nous définissons, dans le cas particulier de deux 
dimensions (rotation planaire), l'expression analytique de l'angle optimal de rotation. Dans le cas 
de plus de deux dimensions, nous utilisons la procédure de rotations successives planaires, 
proposée par Kaiser (1958) pour la rotation en ACP. Une étude sur simulations permet de vérifier 
l'exactitude de la solution analytique et de visualiser l'impact de la rotation. Enfin, une étude de 
cas réelle illustre les intérêts potentiels de la rotation en ACM.  

Mots-clés : données qualitatives, analyse des correspondances multiples, rapport de corrélation, 
rotation, critère varimax 

 
Rotation in Multiple Correspondence Analysis:  

a planar rotation iterative procedure 

Abstract 

Multiple Correspondence Analysis (MCA) is a well-known multivariate method for statistical 
description of categorical data (see for instance Greenacre and Blasius, 2006). Similarly to what 
is done in Principal Component Analysis (PCA) and Factor Analysis, the MCA solution can be 
rotated to increase the components simplicity. The idea behind a rotation is to find subsets of 
variables which coincide more clearly with the rotated components. This implies that maximizing 
components simplicity can help in factor interpretation and in variables clustering. In PCA, the 
probably most famous rotation criterion is the varimax one introduced by Kaiser (1958). Besides, 
Kiers (1991) proposed a rotation criterion in his method named PCAMIX developed for the 
analysis of both numerical and categorical data, and including PCA and MCA as special cases. In 
case of only categorical data, this criterion is a varimax-based one relying on the correlation 
ratio between the categorical variables and the MCA numerical components. The optimization of 
this criterion is then reached by the algorithm of De Leeuw and Pruzansky (1978). In this paper, 
we give the analytic expression of the optimal angle of planar rotation for this criterion. If more 
than two principal components are to be retained, similarly to what is done by Kaiser (1958) for 
PCA, this planar solution is computed in a practical algorithm applying successive pairwise 
planar rotations for optimizing the rotation criterion. A simulation study is used to illustrate the 
analytic expression of the angle for planar rotation. The proposed procedure is also applied on a 
real data set to show the possible benefits of using rotation in MCA. 

Keywords: categorical data, multiple correspondence analysis, correlation ratio, rotation, varimax 
criterion 
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Abstract

Multiple Correspondence Analysis (MCA) is a well-known multivariate method for statistical descrip-

tion of categorical data. Similarly to what is done in Principal Component Analysis (PCA) and Factor

Analysis, the MCA solution can be rotated to increase the components simplicity. The idea behind a

rotation is to find subsets of variables which coincide more clearly with the rotated components. This

implies that maximizing components simplicity can help in factor interpretation and in variables clus-

tering. In this paper, we propose a two-dimensional analytic solution for rotation in MCA. Similarly

to what is done by Kaiser (1958) for PCA, this planar solution is computed in a practical algorithm

applying successive pairwise planar rotations for optimizing the rotation criterion. This criterion is a

varimax-based one relying on the correlation ratio between the categorical variables and the MCA com-

ponents. A simulation study is used to illustrate the proposed solution. An application on a real data

set shows the possible benefits of using rotation in MCA.

Keywords: categorical data, multiple correspondence analysis, correlation ratio, rotation.

1 Introduction

Multiple Correspondence Analysis (MCA) is the french name (Benzécri, 1973; Lebart, Morineau and War-

wick, 1984) for a multivariate quantification method of categorical data. This method has been proposed by

many different authors under various names. Among others we can mention the Dutch Homeneity Analysis

(Gifi, 1990), the Japanese Quantification Method (Hayashi, 1954), the Canadian Dual Scaling (Nishisato,

1980, 1994). All these methods with different theoretical foundations lead usually to equivalent solutions

(Tenenhaus and Young, 1985). A recent survey of various approaches from different statistical “schools” can

be found in Greenacre and Blasius (2006).

1



In the present paper, our treatment and interpretation of MCA resemble that of PCA (Benzécri, 1973;

Greenacre, 1984: chapter 3). Indeed, MCA is concerned with observations of p categorical variables for each

n samples and may be viewed as a form of PCA applicable to categorical variables rather than quantitative

variables. However, special emphasis will be placed on the fact that, as in Correspondence Analysis (CA)

(Greenacre, 1984: chapter 2 and appendix), MCA solutions are neatly encapsulated in the Singular Value

Decomposition (SVD) of a suitably transformed matrix. More precisely, the relationship between MCA and

the lower rank approximation approach of biplot (Greenacre, 1993 or Gower and Hand, 1996) provides the

mathematical scaffolding for applying rotation methods in MCA.

In PCA and Factor Analysis (FA), objective criteria have been proposed for the attainment of simple

structure. The varimax criterion introduced by Kaiser (1958) is by far the most commonly used criterion

for rotation in PCA. This criterion aims at maximizing the sum over the columns of the squared elements

of the loading matrix. The loading matrix plays indeed a major part in the interpretation of the results

since it contains the correlations between the variables and the principal components. The idea is to get

components for which the interpretation is easier, that is to rotate the loading matrix and the standardized

principal components such that groups of variables appear, having high loadings on the same component,

moderate on a few components and negligible on the remaining ones. Because the lower-rank approach in

PCA gives the freedom for orthogonal rotation, the only consequence is that the percentage of variance

explained is redistributed along newly rotated axes, while still conserving the variance explained by the

solution as a whole. In practice, defining the best orthogonal rotation matrix sums up to a constrained

optimization problem. When a solution requires only two dimensions the rotation occurs in a plane and the

rotation matrix can be written according to a rotation angle θ leading to an unconstrained real optimization

problem. When the interpretation of three or more dimensions is required, the analytic expression of θ

optimizing the Varimax criterion is used by Kaiser (1958) in a practical algorithm applying successive

pairwise planar rotations. Several other algorithms for the maximization of the Varimax criterion have since

been proposed in literature: see for instance Neudecker, (1981); Sherin (1966) or ten Berge (1984).

As has already been pointed, MCA and thus CA too, is a particular case of weighted PCA. Despite this

close relationship with a method in which rotation is quite common, rotation in CA has not received much

attention: Van de Velden and Kiers (2003, 2005) and Greenacre (2006) explicitly considered rotation in CA.
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Their results, however, do not carry out over to rotation in MCA. Adachi (2004) considered oblique rotation

in MCA. Oblique and orthogonal rotation involves the same problem of maximizing a simplicity criterion.

Only the imposed constraints differ. Since fewer constraints are imposed in oblique rotation, it is generally

possible to obtain simpler solution than in orthogonal rotation (Browne, 2001). Despite this advantage,

orthogonal rotations are commonly used in practice. Indeed, the orthogonality leads to direct interpretation

of the rotated axes: the orthogonally rotated loadings can be directly interpreted as correlations between the

variables and the rotated standardized principal components and graphical representations remain possible.

Kiers (1991) considered orthogonal rotation in PCAMIX. This method, developed for the analysis of a

mixture of categorical and numerical variables, includes PCA and MCA as special cases. The several rotation

techniques proposed for simple structure in PCAMIX solution can then be applied to MCA solutions. In

PCA, the rotation criteria are defined on the correlations between variables and principal components. For

qualitative variables, however, the correlation can not be used and another coefficient has to be chosen

to express the link between a categorical variable and a (quantitative) component. Kiers (1991) used for

rotation in PCAMIX, and then in MCA, the discrimination measure (Gifi, 1990) defined as the contribution

of a component to the inertia of a variable that is accounted for. This measure can be interpreted as the

squared correlation between a variable optimally quantified and a principal component (Gifi, 1990, p.96),

or alternatively, as the well-known correlation ratio. The idea of simple structure in MCA is to rotate the

component coordinates such that groups of categorical variables appear, having high correlation ratio on

the same component, moderate on a few components and negligible on the remaining ones. The research of

simple structure in MCA can then be operated by applying orthogonal rotation criteria to the correlation

ratio matrix. Kiers (1991) gave in this framework a matrix formulation of the orthomax criterion (including

varimax) which permits interpreting this rotation problem as a simultaneous diagonalization of a set of

symmetric matrices (ten Berge, 1984), and proposed to use the algorithm of de Leeuw and Pruzansky (1978)

for that simultaneous diagonalization.

The main contribution of this paper is the definition of the analytic expression of the angle θ for orthogonal

planar rotation in MCA, optimizing the correlation ratio based Varimax criterion. The relevance of finding

an analytic solution for two dimensional MCA is first that this solution can be used in divisive clustering of

categorical data, which was our first motivation for this work. Moreover, this planar solution can be used, as
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the planar solution proposed by Kaiser (1958), in a practical algorithm applying successive pairwise planar

rotations for optimizing the rotation criterion in more than two dimensions. This procedure is an alternative

to that proposed by Kiers (1991). We also try to give in this paper a pedagogic and relatively detailed

presentation of the problem of rotation in MCA, which has not been extensively studied yet. Therefore, we

remind the relations between the french geometric presentation of PCA and MCA, and the matrix lower-rank

approximation approach of biplots.

In Section 2 we recall the principles of MCA. In Section 3 we consider the rotation problem to obtain

simple structure in MCA and we give the expression of the analytic solution for two-dimensional rotation.

A simulated example is used to illustrate planar rotation. A real data application is treated in Section 4 to

show the potential benefits of using rotation in MCA. Finally concluding remarks are given in Section 5.

2 Recall on multiple correspondence analysis

In this section the theory of MCA is summarized in order to define the terms and notation for the later

sections. The basic data we start with are n observations on p categorical variables. Suppose variable j

can assume qj different values. We can code the data using indicator matrices (also known as dummies).

Indicator matrix Gj is n× qj . It consists of zeroes and ones, and it has exactly one element equal to one in

each row, indicating in which category of variable j object i belongs. By concatenating the Gj we obtain

the n× q matrix G, with q the sum of the qj .

MCA is defined in this paper as the application of simple CA to the indicator matrix G. Hence CA,

and then MCA too, are defined as the application of weighted PCA to the indicator matrix G (Benzécri,

1973; Greenacre, 1984: chapter 3). More precisely, G is divided by its grand total np to obtain the so-called

“correspondence matrix” F = 1
npG, so that 1tnF1q = 1, where, generically, 1i is an i × 1 vector of ones.

Furthermore, the row and column marginals define respectively the vectors r = F1q and c = Ft1n, that is

the vectors of row and column masses. Let Dr = diag(r) and Dc = diag(c) be the diagonal matrices of these

masses. In this particular case, the ith element of r is fi. = 1
n and the sth element of c is f.s = ns

np where ns

is the frequency of category s.
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Weighted PCA of the row profiles. The objects are described here by the row profiles which are points

in Rq calculated by dividing the rows of F by their row marginals. They are weighted by the row masses

in r and their centroid (weighted average) turns out to be exactly the vector of marginal column totals ct.

MCA is then defined as the application of PCA to the centered matrix D−1
r (F−rct) with distances between

profiles measured by the chi-squared metric defined by D−1
c . From a geometrical point of view, this weighted

PCA searches for k ≤ rank(F) orthogonal principal axes such that for each principal axe, the variance of

the D−1
c -projections of the n profiles is maximal. The coordinates of the n projected row profiles on these

principal axes are called row principal coordinates. Note that row (resp. coordinates) is sometimes replaced

by object (resp. scores). The n× k matrix X of row principal coordinates is defined by:

X = D−1/2
r F̃Vk, (1)

where F̃ = D−1/2
r (F− rct)D−1/2

c and Vk is the q × k matrix of eigenvectors corresponding to the k largest

eigenvalues λ1, ..., λk of the matrix F̃tF̃ (see Appendix 1 for a short recall on this wellknown result). Similarly

to what is done in PCA, these projected row profiles can be plotted, for visualization and interpretation, in

the different planes defined by these principal axes called row principal planes.

Weighted PCA of the column profiles. The categories are described here by the column profiles which

are points in Rn calculated by dividing the columns of F by their column marginals. The dual analysis

of columns profiles can be defined simply by interchanging rows with columns and all associated entities,

i.e. transposing the matrix F and repeating all the above. The metrics used to define the principal axes

in the weighted PCA of the centered profiles matrix D−1/2
c (F − rct)t are Dc on Rq and D−1

r on Rn. The

coordinates of the q projected column profiles on these principal axes are called column principal coordinates.

Note that column (resp. coordinates) is sometimes replaced by category (resp. scores). The q× k matrix Y

of columns principal coordinates is defined by:

Y = D−1/2
c F̃tUk, (2)

where Uk is the n × k matrix of eigenvectors corresponding to the k largest eigenvalues λ1, ..., λk of the

matrix F̃F̃t. These projected column profiles can be plotted, for visualization and interpretation, in the

planes defined by these principal axes called column principal planes.
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Use of SVD. The computational algorithm to obtain the principal coordinates of the row and column

profiles with respect to principal axes is obtained with SVD:

F̃ = UΛVt (3)

where UtU = VtV = Ir, Λ is the diagonal matrix with singular values on the diagonal, in weakly descending

order, and r is the rank of F̃. It follows indeed from (3) that expression (1) (resp. (2)) of the row (resp.

column) principal coordinates matrix can be rewritten:

X = D−1/2
r UkΛk (resp. Y = D−1/2

c VkΛk). (4)

The barycentric property. From (3) and (4), we obtain:

Y = D−1
c (F− rct)tX∗ (5)

where X∗ = D−1/2
r Uk = XΛ−1

k is the n× k matrix of the standardized row coordinates called row standard

coordinates. Equation (5) can be interpreted in terms of reciprocal averaging and is called barycentric

property: the principal coordinate of a category is the average of the standard coordinates of the objects in

that category. The corresponding formula is ysα = 1
ns

∑n
i=1 gisx

∗
iα = x̄∗sα, where ysα is the (s, α)-element of

Y and gis is the (i, s)-element of G (see Appendix 2 for details on the barycentric property). This barycentric

property permits a simultaneous representation of the objects and the categories in the so called asymmetric

map of the columns.

Contribution and correlation ratio. The absolute contribution of the variable j to the inertia of the

column principal component α (αth column of Y) is cjα =
∑
s∈Mj

f.sy
2
sα, whereMj is the set of categories

of variable j. Remembering moreover that ysα = x̄∗sα and the sample mean (resp. variance) of the αth

column of X∗ is equal to zero (resp. one), we have the following relation between the absolute contribution

cjα and the correlation ratio between the variable j and the row standard component α (αth column of X∗):

η2
jα =

∑
s∈Mj

ns

n (x̄∗sα − 0)2

1
= p× cjα. (6)

Remembering that in PCA the loadings are correlations between the variables and the components, the

correlation ratios, called discrimination measure in Gifi (1990), are interpreted in MCA as squared loadings.
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The lower rank approximation approach. As shown by Eckart and Young (1936), a rank k least

squares approximation of F̃ is obtained by selecting in the k largest singular values and corresponding

singular vectors. Now, as

||F̃−UkΛkVt
k||2 = ||D−1

r (F− rct)D−1
c −X∗Yt||2,

the matrix X∗Y is a rank k least squares approximation of D−1
r (F−rct)D−1

c . This lower rank approximation

gives the freedom for rotation in MCA.

3 Simple structure in MCA.

Let X̃∗ = X∗T, and Ỹ = YT, where TTt = TtT = Ik. Then, as X∗Yt = X̃∗Ỹt, we immediately see

that the lower rank approximation is not unique and that the MCA solution X∗ and Y is not unique over

orthogonal rotations. This non-uniqueness can be exploited to improve the interpretability of the original

solution by means of rotation. Clearly, rotation of the column principal coordinates matrix Y to simple

structure must be followed by the same rotation of the row standard coordinates matrix X∗. To simplify

the interpretation of the correlation ratios, the matrices Y and X∗ are rotated in such a way that when

considering one variable few correlation ratios are large (close to 1) and as many as possible are close to zero.

The Varimax-based function. After rotation of X∗ and Y, the relation (6) remains true:

η̃2
jα = p

∑
s∈Mj

f.sỹ
2
sα, (7)

where η̃2
jα is the correlation ratio between the variable j and αth column of X̃∗. The Kaiser’s Varimax

function is applied to the p× q correlation ratio matrix, interpreted as squared correlations, but the rotation

matrix T is applied to Y which leads to a more complicated function than in PCA:

h(T) =
k∑

α=1


∑p
j=1(η̃2

jα)2

p
−

(∑p
j=1 η̃

2
jα

p

)2


=
k∑

α=1

p
p∑
j=1

 ∑
s∈Mj

f.sỹ
2
sα

2

−

 p∑
j=1

∑
s∈Mj

f.sỹ
2
sα

2
 . (8)

The rotation of the p× k matrix Y can be formulated as objective,

max
T

h(T),

s.t. TTt = TtT = Ik.
(9)
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The rotation iterative procedure. In PCA, the Kaiser’s procedure is aimed at maximizing the sum

of variances of the squared columns of Ã, where Ã = AT for a given p × k matrix A of factor loadings.

Because a direct solution for the optimal T is not available, except for the case k = 2, Kaiser suggested

an iterative procedure based on planar rotations. The idea is to alternately rotate all pairs of columns of

A. Each rotation is globally optimal for the plane under consideration, and improves the Varimax function,

because the contribution of all k − 2 columns except the pair being rotated is not affected. The essential

part of Kaiser’s procedure is then the explicit formula of the Varimax angle of rotation.

In MCA, we propose to use the same iterative procedure for the optimization problem (9): the single-

plane rotations are made on dimension 1 with 2, 1 with 3, . . ., 1 with k, . . ., (k − 1) with k iteratively until

the process converges, i.e. until k(k−1)
2 successive rotations providing an angle of rotation equal to zero are

obtained. The definition of an explicit formula for the angle of rotation θ maximizing the rotation function

h is then the essential part of our proposed generalization of the Kaiser’s procedure to MCA.

The planar explicit solution. For k = 2, the rotation matrix T is defined by

T =

 cos θ −sin θ

sin θ cos θ

 . (10)

The optimization problem (9) can then be rewritten:

max
θ∈R

h(θ), (11)

where the analytic expression of h(θ) is given in (19) in Appendix 3. The derivative of h gives (see Appendix

3 for details):

∂h

∂θ
= 2(a+ bcos(4θ) + csin(4θ)), (12)

where

a = (p− 1)
p∑
j=1

∑
s∈Mj

∑
t∈Mj

f.sf.tαstβst −
p∑
j=1

∑
l 6=j

∑
s∈Mj

∑
t∈Ml

f.sf.tαstβst,

b = (p− 1)
p∑
j=1

∑
s∈Mj

∑
t∈Mj

f.sf.tδstγst −
p∑
j=1

∑
l 6=j

∑
s∈Mj

∑
t∈Ml

f.sf.tδstγst,

c =
(p− 1)

2

p∑
j=1

∑
s∈Mj

∑
t∈Mj

f.sf.t(γ2
st − δ2st)−

1
2

p∑
j=1

∑
l 6=j

∑
s∈Mj

∑
t∈Ml

f.sf.t(γ2
st − δ2st), (13)
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with

αst = ys1yt1 + ys2yt2,

βst = ys2yt1 − ys1yt2,

γst = ys2yt1 + ys1yt2,

δst = ys1yt1 − ys2yt2. (14)

Afterwards the trick to solve a + bcos(4θ) + csin(4θ) = 0 consists in dividing each term by (b2 + c2)1/2

and introducing the angle ϕ ∈]− π,+π] such that cos(ϕ) = b
(b2+c2)1/2 and sin(ϕ) = c

(b2+c2)1/2 . It gives

a

(b2 + c2)1/2
+ cos(ϕ)cos(4θ) + sin(ϕ)sin(4θ) =

a

(b2 + c2)1/2
+ cos(4θ − ϕ) = 0.

As h only depends on cos(θ) and sin(θ), it is periodic (of period π/2) and differentiable and the derivative

necessarily cancels for each minimum and maximum. Therefore |a| ≤ (b2 + c2)1/2 and this equation has two

solutions:

θ̂ =
1
4

(± arcos(− a

(b2 + c2)1/2
) + ϕ), (15)

corresponding to the minimum and the maximum of h, on condition of course that |a| ≤ (b2 + c2)1/2. But

this condition is necessarly verified because as h only depends on cos(θ) and sin(θ), it is periodic (of period

π/2) and differentiable and the derivative necessarily cancel for each minimum and maximum.

An illustrative example. In this simulated example, we consider four binary variables x1, . . . , x4 such

that x1 and x2 (respectively x3 and x4) are strongly linked and not related to the other variables x3 and x4

(resp. x1 and x2). Then we have two groups of variables denoted C1 and C2. Let e1 (resp. e2, e3, e4) be a

category of x1 (resp. x2, x3, x4) and P denote one probability measure. To generate a contingency table, the

following log-linear model (see for instance Agresti (2002)) is used:

log(P(x1 = e1, . . . , x4 = e4)) = log(µe1e2e3e4)

= (λx1
e1 + λx2

e2 + βx1x2
e1e2 ) + (λx3

e3 + λx4
e4 + βx3x4

e3e4 ) + βx1x4
e1e4 , (16)

where e1, e2, e3, e4 ∈ {0, 1}. The parameters λx1
e1 , λ

x2
e2 , λ

x3
e3 and λx4

e4 designate the effect of each variable and

the parameters βx1x2
e1e2 and βx3x4

e3e4 are interactions corresponding with cohesion terms in each group. The
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parameter βx1x4
e1e4 is used to add some interactions between categories of variables belonging to different

groups C1 and C2.

We simulate a contingency table corresponding to a global sample size n = 1000 using log-linear model

(16) with the following values of the parameters λx1
0 = λx3

0 = 1, λx2
0 = λx4

0 = 2, βx1x2
00 = −1.5, βx3x4

00 = −0.9

and βx1x4
00 = −0.5. All the remaining parameters are set to zero. Thus the within groups cohesion parameters

are high whereas the between groups interaction parameters are low in order to get well defined groups. We

apply MCA on the categorical data corresponding with the generated contingency table. We retain k = 2

components and apply a planar rotation using the Varimax-based function h. Using (15) the corresponding

analytic solution is θ̂ ≈ π
3 . Figure 1 plots the criterion h(θ) for θ ∈ [−π, π] and we can verify on this figure

that h is π
2 -periodic and maximum in θ̂ ≈ π

3 .

Figure 1: Graph of θ 7→ h(θ).

In order to visualize the impact of rotation on this simulated data, we plot in Figure 2 the four variables

according to their correlation ratio to the first row standard component (in abscissa) and to the second row

standard component (in ordinate) before and after planar rotation, respectively on the left and right side.

As expected the variables are more clearly related to the components after rotation.

Let us also visualize in Figure 3 the impact of rotation on the representation of the categories on the

first column principal plane of MCA: the principal coordinates of the categories before (resp. after) rotation

are given in the first two columns of Y (resp. Ỹ). We see that after rotation the two categories of each

10



Figure 2: Plot of the correlation ratio matrix before rotation (on the left) and after planar rotation (on the

right).

variable are more clearly related to one of the two components. To conclude this simulated example provides

expected results. Let us now study the impact of rotation on a real data set.

Figure 3: Plot of the categories in the first principal plane before rotation (on the left) and after rotation

(on the right).
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4 A real data application

In this section we apply this rotation methodology on a real data set in order to illustrate the benefits of

using rotation in MCA. We consider a user satisfaction survey of pleasure craft operators on the ”Canal

des Deux Mers” located in South of France. This study has been realized from June to December 2008.

It contains numerous questions with quantitative or qualitative answers. The sample size is n = 1082

pleasure craft operators. We focus here on a small number of qualitative variables in order to get clear

graphical representations when plotting the categories on the principal plane. Although considering only

four variables is of little practical interest, this application is useful to illustrate the rotation phenomenon.

The four chosen variables are named “information”, “stopover”, “cleanliness” and “sailors”. They have

each one three categories. The variable “information” deals with the quality of the information concerning

sites worth visiting and its categories are 1-satisfactory, 2-unsatisfactory and 3-no opinion. The variable

“stopover” is associated with the following question What makes you decide to stop over at a particular

place? and the possible answers are 1-necessity (supplies, time constraints, ...), 2-interest of stopover point

(architecture, restaurant, landscape, ...) and 3-desire to be on dry land. The variable “cleanliness” is about

the canal’s degree of cleanliness (1-clean, 2-average or 3-dirty). Finally the variable “sailors” is associated

with the question How would you describe other sailors you encountered? and its categories are 1-pleasant,

2-unpleasant and 3-do not know.

To visualize the effects of rotation on this data set, we first plot in Figure 4 the four variables according

to their correlation ratio to the first two row standard principal components before and after rotation. We

see that the association of the variables to the components is clearly easier after rotation. Thus two groups

of variables appear, the first one contains the variables “sailors” and “information” and the second one is

composed of “cleanliness” and “stopover”.

We observe in Figure 5 the impact of rotation on the representation of the categories on the first principal

plane. The rotated components have a better discriminatory capability than the initial ones. The first

component represents on the left tourists who decide to stop over at a particular place because of interest

and who think the canal’s degree of cleanliness is average. On the contrary craft operators on the right stop

over because of necessity and find the canal dirty. This component refers to the “expectations of pleasure
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Figure 4: Plot of the correlation ratio matrix before rotation (on the left) and after planar rotation (on the

right).

Figure 5: Plot of the categories in the first principal plane before rotation (on the left) and after rotation

(on the right).

craft operators” concerning the use of the canal. People who stop over because of necessity may not be

pleased to be on dry land and are then quite demanding and critical of the canal out of hand. The second

component could be labelled “opinion of the tourists” since it is discriminating between people with and

people without an opinion either on the relationship with other sailors or on the information concerning

sites worth visiting. Note that a second issue of discussion would be whether the respondents who scored

13



the category 3-do not know when asked their opinion of other sailors are indeed individuals who do not

encounter other sailors. Maybe they are people who like some and do not like others. Or people who do

not feel like giving their opinion on other sailors. This latter view may be substantiated by the fact that

these people also do not give their opinion on the information concerning sites worth visiting. This example

on real data shows that rotation in MCA may help for the interpretation of the results since categories are

better aligned along the components. Thus the labelling and interpretation of the components is easier.

5 Concluding remarks

In this article we propose a two-dimensional analytic solution for rotation in MCA using a Varimax-based

criterion relying on the correlation ratio between the categorical variables and the MCA components. We

have checked on a simulated example the accuracy of the given solution. We have also shown that rotation

may be beneficial to real data since it may bring new elements for the interpretation of the results. However

we are aware of the simplicity of the data we considered for an easier presentation and of the probable

supplementary difficulty when dealing with more complex data sets.

When higher dimensionality is required, we use the practical algorithm of Kaiser (1958) which consists

in computing the two-dimensional solution and then applying successive pairwise rotations. But although

the Kaiser rotation procedure is a very popular techniques in data analysis, it is not without problems.

Remedy against nonoptimal Varimax rotation have been proposed (Fraenkel, 1984; ten Berge, 1995) and

may possibly be applied in the iterative planar rotation procedures proposed in this paper. ten Berge (1984)

also showed that Varimax rotation can be interpreted as a special case of diagonalizing symmetric matrices

and that the solution by De Leeuw and Pruzansky (1978) is essentially equivalent to the solution by Kaiser.

We would like to obtain the same kind of result in MCA in order to link the rotation procedure proposed

by Kiers (1991) for PCAMIX and thus MCA too, and the procedure proposed in this paper.

Moreover we think that the proposed planar solution in MCA can be used in divisive hierarchical methods

for the clustering of qualitative variables. The well-known VARCLUS procedure of SAS software, planar

rotation is used to help dividing at best a cluster of quantitative variables in two sub-clusters. The adaptation

of this approach to qualitative variables is currently under investigation. Finally a future prospect on this

work would be to give the analytic expression of the rotation matrix for a dimension larger than two.
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Appendix

Appendix 1: Short recall on row principal coordinates. Let R = D−1
r F − 1nct = D−1

r (F − rct)

denote the n × q matrix of the centered row profiles. In a first step, MCA (or weighted PCA) searches for

an axis with head vector w1 (of D−1
c -norm equal to 1) such that the vector x1 = RD−1

c w1 of the D−1
c -

projections of the rows of R, has maximal variance (i.e. a maximal Dr-norm). The first principal component

x1 is then solution of the optimization problem: max
x∈Rn

‖ x ‖2Dr
,

subject to wtD−1
c w = 1,

(17)

which is equivalent, with the change of variable v = D−1/2
c w, to the following simpler writting:

 max
v∈Rp

vtF̃tF̃v,

s.t.vtv = 1.
(18)

where F̃ = D−1/2
r (F − rct)D−1/2

c . The first eigenvector v1 associated with the largest eigenvalue λ1 of the

matrix F̃tF̃ is a solution of (18) and the sample variance of x1 is equal to λ1. The other principal components

are defined similarly by xα = RD−1/2
c vα, for α = 2, . . . k, where vα is the eigenvector associated with the

αth largest eigenvalue λα of F̃tF̃ and λα is the sample variance of vα. The vectors xα are the k columns of

the matrix of object scores X = RD−1/2
c Vk = D−1/2

r F̃Vk.

Appendix 2: The barycentric property. Equation (4) of the column principal coordinate matrix

gives Yt = ΛkVt
kD
−1/2
c . It follows from (3), that F̃D−1/2

c = UkYt and from (4) that Y = D−1
c (F −

rct)tD−1/2
r Uk = D−1

c (F− rct)tX∗.

Remembering from the definition of F that fis = gis

np , fi. = 1
n and f.s = ns

np , the general term of (F− rct)
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is then gis

np −
ns

n2p . It gives:

ysα =
n∑
i=1

np

ns
(
gis
np
− ns
n2p

)x∗iα

=
1
ns

n∑
i=1

gisx
∗
iα −

1
n

n∑
i=1

x∗iα

= x̄∗sα

Appendix 3: Analytic expression of h(θ). For k = 2, criterion (8) simply writes

h(θ) = p

p∑
j=1

 ∑
s∈Mj

f.sỹ
2
s1

2

︸ ︷︷ ︸
M1

+ p

p∑
j=1

 ∑
s∈Mj

f.sỹ
2
s2

2

︸ ︷︷ ︸
M2

−

 p∑
j=1

∑
s∈Mj

f.sỹ
2
s1

2

︸ ︷︷ ︸
M3

−

 p∑
j=1

∑
s∈Mj

f.sỹ
2
s2

2

︸ ︷︷ ︸
M4

(19)

where ỹs1 = ys1 cosθ + ys2 sinθ and ỹs2 = −ys1 sinθ + ys2 cosθ are the rotated loadings.

To maximize (19), we have to differentiate h with respect to θ and to set the derivative equal to zero.

Note that this is only a necessary but not sufficient condition and we have to make sure it is a maximum.

Let us first remark that
∂ỹs1
∂θ

= ỹs2 and
∂ỹs2
∂θ

= −ỹs1. Thus we have

∂(M1 +M2)
∂θ

= 4pA and
∂(M3 +M4)

∂θ
= 4(A+B)

where

A =
p∑
j=1

(
∑
s∈Mj

f.sỹs1ỹs2)(
∑
t∈Mj

(ỹ2
t1 − ỹ2

t2))


and

B =
p∑
j=1

p∑
l 6=j

(
∑
s∈Mj

f.sỹs1ỹs2)(
∑
t∈Ml

f.t(ỹ2
t1 − ỹ2

t2)).

It follows
∂h

∂θ
= 4(p − 1)A − 4B. Let us now remark that ỹs1ỹs2 = (y2

s2 − y2
s1) 1

2 sin2θ + ys1ys2cos2θ, and

ỹ2
t1 − ỹ2

t2 = (y2
t1 − y2

t2)cos2θ + 2yt1yt2sin2θ. Then we have

A =
p∑
j=1

{∑
s∈Mj

f.s[(y2
s2 − y2

s1)
1
2

sin2θ + ys1ys2cos2θ]} × {
∑
t∈Mj

f.t[(y2
t1 − y2

t2)cos2θ + 2yt1yt2sin2θ]}

 .

After a good deal of trigonometric identities and algebraic manipulations, we get:

A = 1
2

∑p
j=1

∑
s∈Mj

∑
t∈Mj

f.sf.t {(y2
s2 − y2

s1)yt1yt2 + (y2
t1 − y2

t2)ys1ys2

+[(y2
s1 − y2

s2)yt1yt2 + (y2
t1 − y2

t2)ys1ys2]× cos4θ

+ 1
2 [(y2

s2 − y2
s1)(y2

t1 − y2
t2) + 2ys1ys2yt1yt2]× sin4θ}.

Then we have

A =
1
2

p∑
j=1

∑
s∈Mj

∑
t∈Mj

f.sf.t{αstβst + δstγstcos4θ +
1
2

(γ2
st − δ2st)sin4θ}
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and

B =
1
2

p∑
j=1

p∑
l 6=j

∑
s∈Mj

∑
t∈Mj

f.sf.t{αstβst + δstγstcos4θ +
1
2

(γ2
st − δ2st)sin4θ}

where the terms αst, βst, γst and γst are defined in (14). Finally, we get:

∂h

∂θ
= 2(a+ bcos4θ + csin4θ),

where the expression of a, b and c are given in (13).
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