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Résumé 

Nous caractérisons la trajectoire optimale d’extraction d’une ressource épuisable, sous la forme 

d’une règle de décision en boucle bouclée, applicable pour une large classe de modèles. 
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1 Introduction

Hotelling’s seminal paper (1931) is the cornerstone of the economics of ex-
haustible resources. He established the now-famous "Hotelling rule," which
states that the marginal utility of extracting/consuming the exhaustible resource
must grow at a rate equal to the rate of interest, along an optimal extraction
path. Combined to the prescription that the depletion of the resource is op-
timal, in finite or infinite time (depending on the limit of the marginal utility
when consumption tends to zero), the Hotelling rule allows to derive the effi cient
extraction path, in two steps. One must first determine the optimal time of de-
pletion, using appropriate transversality conditions. And one must then find the
initial rate of extraction, such that the corresponding extraction path (induced
by the Hotelling rule) will effectively deplete the resource at the optimal time.
In this paper, we propose an alternative way to derive an optimal extraction

path of an exhaustible resource. Formally, we display a characterization, in
feedback form, of the optimal solution. We believe that this rule will prove easier
to use in many situations. Moreover, it holds for a large class of exhaustible
resource problems, as long as the resource stock is not an argument of the
objective function.
The remaining of the paper is organized as follows. Section 2 recalls the

basic Hotelling model. Section 3 states the optimal rule in feedback form and
his proof.

2 The Basic Hotelling Model.

The economy is endowed with a finite stock, x0, of a homogeneous consumption
good. Denote by q the rate of consumption and by u(q) the instantaneous utility
of consuming q. We assume that there exists q > 0 (including the possibility
that q = ∞) such that u′ (q) > 0 and u′′ (q) < 0, for all 0 ≤ q < q, and
u (q) = u (q), for all q ≥ q. Social welfare is taken to be the sum of utilities,
discounted at the strictly positive rate δ. The social problem is therefore to find
a consumption path, q (·), that maximizes

W =
∫∞
0
u (q (t)) e−δtdt

subject to:
ẋ (t) = −q (t) , x (0) = x0,
q (t) ≥ 0, x (t) ≥ 0.

(1)

This problem is usually solved by means of the Pontryagin’s maximum prin-
ciple. This leads to the characterization of an optimal solution as a consumption
path satisfying the Hotelling rule (i.e., such that the marginal utility increases
at the rate of discount) and depleting the resource stock in finite or infinite
time (depending on the limit of the marginal utility for an arbitrarily small
consumption).
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3 Optimal Solution in Feedback Form.

This section states and discusses the result of the paper, taking the form of
proposition 1 below. We actually solve the Hotelling problem by means of
dynamic programming. This allows a characterization in feedback form of the
optimal solution. The proofs are relegated in the appendix.

In order to write Proposition 1, further definitions and assumptions are
needed. Define σ (q) ≡ −u′′ (q) q/u′ (q), for all 0 ≤ q < q, the elasticity of
marginal utility, and S (q) ≡ u (q) − u′ (q) q, for all 0 ≤ q ≤ q, the consumer’s
surplus. Assuming integrability of σ (q), let Θ (q) ≡

∫ q
0
σ (s) ds, for all 0 ≤ q < q,

and assume that limq→q Θ (q) =∞.

Proposition 1. (Optimal policy in Feedback form.)
The optimal policy, given in the feeback form q = f (x), is implicitly

defined by
Θ (f (x)) = δx, for all x. (2)

The corresponding value function is

V (x) = (1/δ)S (f (x)) , for all x. (3)

The figure below illustrates the utilization of proposition 1. It displays a
possible graph of the elasticity of the marginal utility σ (q). According to Propo-
sition 1, it is optimal, at any time, to extract a quantity q◦, such that the surface
area below the graph, from the origin to q◦, equals δx0, where δ is the discount
rate and x0 is the current state of the resource.

Figure 1. Derivation of the optimal extraction.
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4 Discussion

Following from Proposition 1 and Figure 1, the solution to the Hotelling prob-
lem only depends on the curvature of the marginal utility, σ (·), the rate of
discount, δ, and the initial stock of the resource, x0. Here, we derive, by means
of comparative statics, several properties that follows from this.

To begin with, let us analyse the role of the elasticity of the marginal utility.
Therefore, we consider two Hotelling problems, only differing with respect to
their elasticity of marginal utility, σ1 (·) and σ2 (·) (say). We can use Figure
1 to deal with the comparative statics. We know that the optimal extraction
is obtained when the area below the graph of the elasticity of the marginal
utility has measure δx0. From this, if we assume that σ1 (q) < σ2 (q), for all
q, for example, it will be optimal to extract more of the resource in the first
problem, than in the second one. Hence, this shows that the larger the elasticity
of marginal utility is, the smaller the optimal extraction.

Let us now view the role played by the rate of discount and the resource
stock. We can consider these two parameters jointly, since the optimal extrac-
tion actually appears to be a function of their product δx0 only. To the best
of my knowledge, this stricking property is never mentionned (see, in particu-
lar, Dasgupta and Heal, 1979). Using Figure 1, one immediately sees that the
larger the rate of discount and/or the resource stock are, the larger the optimal
extraction.

It is of interest to clarify the relationship existing between Proposition 1 and
the Hotelling rule. Of course, the policy in feedback form (2), being optimal,
induces an extraction path that satisfies the Hotelling rule. This implication is
shown in the appendix (see Lemma 3). However, the reciprocal implication is
false. Indeed, the Hotelling rule does determine an optimal extraction path, only
when combined with an appropriate boundary condition, called a transversality
condition. Hence, we can say that the policy in feedback form (2) summarizes
both the Hotelling rule and the transversality condition.

A last issue of interest concerns the way to obtain similar results in other
contexts. The following steps, which actually sketches the proof of proposition
1, provides the trick. It may be fruitful in differential games applied to non-
renewable resources (Dockner et al., 2000).

Note that Problem (1) is an autonomous optimal control problem with in-
finite horizon. Hence, both the value function, V (x), and the optimal con-
trol, f (x), are functions of the state alone. They satisfy the Hamilton-Jacobi-
Bellman equation

δV (x) = max
q≥0
{u (q)− V ′ (x) q} , (4)

= u (f (x))− V ′ (x) f (x) .
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As a maximizer of the RHS of (4), f (x) satisfies the complementarity slackness
conditions

u′ (f (x))− V ′ (x) ≤ 0, f (x) ≥ 0 and (u′ (f (x))− V ′ (x)) f (x) = 0. (5)

Hence, after substitution (using V ′ (x) f (x) = u′ (f (x)) f (x)), we can write

δV (x) = u (f (x))− u′ (f (x)) f (x) .

By differentiation, we get

δV ′ (x) = u′′ (f (x)) f (x) f ′ (x) .

Now, it is natural to assume that f (x) > 0, for all x > 0. Then, we can subsitute
V ′ (x) = u′ (f (x)) (from (5)) to obtain the first-order differential equation

−u
′′ (f (x)) f (x)

u′ (f (x))
f ′ (x) = σ (f (x)) f ′ (x) = δ

from which the feedback form in Proposition 1 derives by integration, using the
boundary condition f (0) = 0.

5 Aknowlegements.

I wish to thank Robert Cairns and Marc Leandri for their comments, which
helped me to improve this paper.

6 Appendix.

Appendix A.1. Proof of proposition 1.

Recall the definitions S (q) ≡ u (q) − u′ (q) q, for all 0 ≤ q ≤ q, and Θ (q) ≡∫ q
0
σ (s) ds, for all 0 ≤ q < q, and the assumption that limq→q Θ (q) =∞.
Consider the policy f (x) such that Θ (f (x)) = δx, for all x.

1) Feasibility. We first show, in Lemmas 1 and 2, that the policy f (x) is
feasible.

Lemma 1. For all x > 0, f (x) > 0, and f (0) = 0.

Proof. If x = 0, f (0) = 0 follows from Θ (0) = 0. Likewise, limx→∞ f (x) =
q follows from limq→q Θ (q) = ∞. If 0 < x < ∞, as Θ (0) = 0 < δx < ∞ =
limq→q Θ (q) and Θ (q) is continuous, there exists 0 < f (x) < q such that
Θ (f (x)) = δx (by the intermediate value theorem). As Θ (q) is increasing (for
Θ′ (q) = σ (q) > 0, for all q > 0), this solution is unique. �
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Lemma 2. The policy f (x) generates a trajectory of the resource stock such that
x (t) ≥ 0, for all t, and limt→∞ x (t) = 0.

Proof. By definition, the policy f (x) generates a trajectory such that
ẋ (t) = −f (x (t)), for all t, with initial condition x (0) = x0. Lemma 2 follows
directly from the properties of f (x), which implies that ẋ (t) = −f (x (t)) < 0,
when x (t) > 0, and ẋ (t) = 0, when x (t) = 0. �

2) Hotelling rule. Assume that the (feasible) policy f (x) is implemented. De-
note by x (·) the resulting trajectory of the resource (such that ẋ (t) = −f (x (t)),
for all t, and x (0) = x0). Let T represent the time of depletion of the resource
stock (including the possibility that T = ∞). Lemma 3 shows the relation be-
tween the policy f (x) and the Hotelling rule.

Lemma 3. The policy f (x) satisfies σ (f (x)) f ′ (x) = δ > 0, for all x > 0. It fol-
lows that, along the path x (·) induced by f (x), the marginal utility u′ (f (x (t)))
grows at the rate δ, for all t < T (i.e., the Hotelling rule).

Proof. The first part is obtained from the implicit function theorem, which
states that σ (f (x)) f ′ (x) = δ > 0, for all x > 0.
To show the second part, define, for all t < T , p (t) = u′ (f (x (t))). Since

x (t) > 0 is true, for all t < T , differentiation yields:

ṗ (t) = u′′ (f (x (t))) f ′ (x (t)) ẋ (t) .

Substituting ẋ (t) = −f (x (t)) and dividing by p (t) = u′ (f (x (t))), we get:

ṗ (t)

p (t)
= σ (f (x (t))) f ′ (x (t)) = δ,

which yields the second part of the lemma. �

3) Objective Value. We derive the value of the social objective (1) when the
(feasible) policy f (x) is implemented, through Lemmas 4 and 5.
By definition, the value of the objective function associated with the policy

f (x) is:

W =

∫ ∞
0

u (f (x (t))) e−δtdt

where: ẋ (t) = −f (x (t)) and x (0) = x0.

Lemma 4. For all t < T , S (f (x (t)))
(
−e−δt/δ

)
is a primitive of u (f (x (t))) e−δt.

Proof. For all t < T , let φ (t) = S (f (x (t)))
(
−e−δt/δ

)
. Differentiation

yields:

φ̇ (t) = S (f (x (t))) e−δt + S′ (f (x (t))) f ′ (x (t)) ẋ (t)
(
−e−δt/δ

)
.
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After substitution, we get (using S (q) = u (q) − u′ (q) q, S′ (q) = −u′′ (q) q,
σ (q) ≡ −u′′ (q) q/u′ (q) and ẋ (t) = −f (x (t)), and rearranging):

φ̇ (t) = u (f (x (t))) e−δt−(σ (f (x (t))) f ′ (x (t))− δ)u′ (f (x (t))) f (x (t))
(
−e−δt/δ

)
.

(6)
By Lemma 3, the second term is nil and we get:

φ̇ (t) = u (f (x (t))) e−δt,

which is Lemma 4. �

Lemma 5. The value of the social objective W associated to the policy f (x) is
(1/δ)S (f (x0)).

Proof. We treat separately the cases where the resource is depleted asymp-
totically (i) and in finite time (ii).

(i) Consider the case where T = ∞ (i.e., x (t) > 0 and f (x (t)) > 0, for all
t).
By definition of W and Lemma 4, we have (using x (0) = x0):

W = lim
T→∞

∫ T

0

u (f (x (t))) e−δtdt

= lim
T→∞

[
S (f (x (t)))

(
−e−δt/δ

)]T
0

= (1/δ)S (f (x0)) + lim
T→∞

S (f (x (T )))
(
−e−δT /δ

)
Therefore, Lemma 5 holds if limT→∞ S (f (x (T )))

(
−e−δT /δ

)
= 0.

Remember φ (t) = S (f (x (t)))
(
−e−δt/δ

)
, for all t. Using Lemma 4, we

have (using φ̇ (t) = u (f (x (t))) e−δt, φ (t) = S (f (x (t)))
(
−e−δt/δ

)
and S (q) =

u (q)− u′ (q) q):

φ̇ (t) + δφ (t) = f (x (t))u′ (f (x (t))) e−δt.

From Lemma 3, u′ (f (x (t))) e−δt = u′ (f (x0)), for all t (using x (0) = x0).
Substituting, we obtain:

φ̇ (t) + δφ (t) = f (x (t))u′ (f (x0)) .

Since limt→∞ f (x (t)) = 0, a solution of this ODEmust be such that limt→∞ φ (t) =
0 (see Appendix A.2). This proves that limT→∞ S (f (x (T )))

(
−e−δT /δ

)
= 0.

(ii) Consider the case where T < ∞ (i.e., x (t) > 0 and f (x (t)) > 0, for all
t < T ; and x (t) = 0 and f (x (t)) = 0, for all t ≥ T ).
By definition of W and lemma 4, we have:

W =

∫ T

0

u (f (x (t))) e−δtdt+

∫ ∞
T

u (0) e−δtdt

=
[
S (f (x (t)))

(
−e−δt/δ

)]T
0

+ u (0)
(
e−δT /δ

)
= (1/δ)S (f (x0)) + (S (f (x (T )))− u (0))

(
−e−δT /δ

)
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Therefore, Lemma 5 holds if (S (f (x (T )))− u (0))
(
−e−δT /δ

)
= 0, which is

immediate (using x (T ) = 0, by definition of T , f (0) = 0 and S (q) = u (q) −
u′ (q) q). �

4) Optimality. We finally show that the policy f (x) is optimal, by proving
that the corresponding value of the objective function, W = (1/δ)S (f (x)),
satisfies the Hamilton-Jacobi-Bellman equation, for any initial state x, with
q = f (x) the optimal control.

Lemma 6. Define V (x) = (1/δ)S (f (x)), for all x > 0. It satisfies the
Hamilton-Jacobi-Bellman equation: δV (x) = maxq≥0 {u (q)− V ′ (x) q}. The
right-hand side of the Hamilton-Jacobi-Bellman equation is maximized when
q = f (x).

Proof. For all x > 0, let V (x) = (1/δ)S (f (x)). By differentiation, we
obtain (using S′ (q) = −u′′ (q) q and σ (q) ≡ −u′′ (q) q/u′ (q)):

V ′ (x) =
1

δ
σ (f (x)) f ′ (x)u′ (f (x)) .

Using lemma 3, it follows that:

V ′ (x) = u′ (f (x)) .

For all x > 0, let:

H0 (x) = max
q≥0
{u (q)− u′ (f (x)) q} .

This function is maximized if, and only if (by concavity of u (q)):

u′ (q)− u′ (f (x)) ≤ 0, q ≥ 0 and (u′ (q)− u′ (f (x))) q = 0.

Hence, q = f (x) maximizes H0 (x) and (using S (q) = u (q)− u′ (q) q):

H0 (x) = S (f (x)) .

This proves that V (x) = (1/δ)S (f (x)) satisfies the Hamilton-Jacobi-Bellman
equation: δV (x) = maxq≥0 {u (q)− V ′ (x) q}. �

This completes our proof of proposition 1. �

Appendix A.2.

Let φ0 = (1/δ)S (f (x0)) and, for all t, a (t) = f (x (t))u′ (f (x0)). Knowing
that a (t) is positive, decreasing and tends to zero when t tends to infinity, we
must show that the solution φ (t) of the following ODE:

φ̇ (t) + δφ (t) = a (t) , φ (0) = φ0

9



is such that limt→∞ φ (t) = 0.
Indeed, the solution of this ODE is:

φ (t) = φ0e
−δt +

∫ t

0

a (s) eδ(s−t)ds.

As a (t) is decreasing, a (t) ≤ a (0), for all t. As limt→∞ a (t) = 0, for all ε > 0,
there exists t0 such that a (t) < δε/2, for all t > t0. Thus, for all t > t0, we
have:

|φ (t)| < |φ0| e−δt + a (0)

∫ t0

0

eδ(s−t)ds+ δε/2

∫ t

t0

eδ(s−t)ds

< |φ0| e−δt + (a (0) /δ)
(
eδt0 − 1

)
e−δt + (ε/2)

(
1− eδ(t0−t)

)
The RHS tends to ε/2 when t tends to infinity. Therefore, |φ (t)| is smaller than
ε if t is suffi ciently large. As ε is any small positive number, this proves that
limt→∞ φ (t) = 0.
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