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Comment tuer les inventeurs: une évaluation de l’Algorithme Massacrator© pour 
désambiguïser les inventeurs 

Résumé 

La désambiguïsation de noms  des inventeurs est un problème de plus en plus important 
pour les utilisateurs de données de brevets. Nous proposons et testons un certain nombre 
d'améliorations à l'algorithme Massacrator ©, proposé initialement par Lissoni et al. (2006) 
et  maintenant appliqué à APE-INV, une base de données en accès libre soutenue par 
l’European Science Foundation. D'après Raffo et Lhuillery (2009), nous décrivons la 
désambiguïsation comme un processus en 3 étapes: nettoyage et analyse, sélection et 
filtrage. Par le biais d'une analyse de sensibilité, basée sur des simulations MonteCarlo, nous 
montrons comment divers critères de filtrage peuvent être manipulés afin d'obtenir des 
combinaisons optimales de précision et de recall (type I et type II des erreurs). Nous 
montrons aussi comment ces combinaisons différentes produisent des résultats différents, 
plus ou moins fiables en fonction des applications prévues (études sur la productivité, la 
mobilité ou les réseaux  des inventeurs). Les critères de filtrage basés sur les informations sur 
les adresses des inventeurs sont sensibles à la qualité des données, alors que celles fondées 
sur l'information sur les réseaux de co-inventeurs sont toujours efficaces. Des détails sur 
l'accès aux données et sur la collecte des retours d'information par les utilisateurs (ayant 
pour but l'amélioration de la qualité des données) sont également discutés. 

Mots-clés : données de brevets, inventeurs, désambiguïsation de noms 

How To Kill Inventors: Testing The Massacrator© Algorithm For Inventor Disambiguation  

Abstract 

Inventor disambiguation is an increasingly important issue for users of patent data. We 
propose and test a number of refinements to the Massacrator© algorithm, originally 
proposed by Lissoni et al. (2006) and now applied to APE-INV, a free access database funded 
by the European Science Foundation. Following Raffo and Lhuillery (2009) we describe 
disambiguation as a 3-step process: cleaning&parsing, matching, and filtering. By means of 
sensitivity analysis, based on MonteCarlo simulations, we show how various filtering criteria 
can be manipulated in order to obtain optimal combinations of precision and recall (type I 
and type II errors). We also show how these different combinations generate different results 
for applications to studies on inventors' productivity, mobility, and networking. The filtering 
criteria based upon information on inventors' addresses are sensitive to data quality, while 
those based upon information on co-inventorship networks are always effective. Details on 
data access and data quality improvement via feedback collection are also discussed. 

Keywords: patent data, inventors, name disambiguation 
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1. Introduction1 

Economic studies of innovation have for long made use of patent data 

(Griliches,1990; Nagahoka et al., 2010). Assisted by digitalization of records and 

increasing computational power, economists and other social scientists have extracted 

increasing quantities of information from patent documents, such as the applicants' 

identity and location, the technological contents of the invention, or the latter's impact, 

as measured by citations. More recently, information on inventors has attracted a good 

deal of attention. Identifying inventors allows studying their mobility patterns, both in 

space and across companies,  (Agrawal et al., 2006; Marx et al., 2009) as well as their 

social capital, as measured within co-inventor networks (Fleming, 2007; Breschi and 

Lissoni, 2009; Lissoni, 2010). Finally, it makes it possible to look for additional 

information at the individual level, ranging from professional identities (does the inventor 

appear also on a list of R&D employees? or a list of academic scientists working for a 

university or a public lab?) to other type archival data on knowledge-related activities 

(such as scientific publications; see Azoulay et al., 2009; Breschi et al., 2007; Lissoni et 

al., 2008).  

Identifying inventors within any given set of patent data, as well as matching them 

to any other list of individuals, requires the elaboration of complex "disambiguation" 

algorithms. They are necessary to analyse in a non-trivial way the text strings containing 

the inventors' names, surnames, and addresses. Yet, it is only of late that users of 

inventor data have started discussing openly about the disambiguation techniques they 

employ, and examine their implications in terms of data quality and reliability of the 

evidence produced  (Raffo and Lhuillery, 2009; Lai et al., 2011).  

This paper deals with Massacrator© 2.0, the disambiguation algorithm we 

elaborated to create the APE-INV inventor database, an open-access initiative funded by 

Research Networking Programme of the European Science Foundation (http://www.esf-

ape-inv.eu). The APE-INV inventor database has been conceived as a subset of the 

PatStat-Kites database (http://db.kites.unibocconi.it/),  which contains all patent 

applications filed at EPO, as derived from the October 2011 release of the Worldwide 

Patent Statistical Information Database (better known as PatStat2). As such, it can be 

more generally described as a PatStat-compatible dataset, which addresses the needs of 

the increasingly large community of PatStat users. 

Massacrator© 2.0 is a revised form of the original Massacrator© algorithm, which 

was originally conceived for the ad hoc purpose of identifying inventors in selected 

countries, and with the intent of maximizing precision (that is, minimizing type I errors, 

or false positives; Lissoni et al.,2006). Our revision has transformed it into a more 

general tool, one that users can calibrate also to maximize recall (minimize type II 

errors, or false negatives) or to achieve the best possible combination of recall and 

precision (that is, to strike a balance between different types of errors). 

                                                      
1 Acknowledgements:  
Financial support from the Research Networking Programme of the European Science Foundation is 
acknowledged (APE-INV – Academic Patenting in Europe Project). Early drafts of the paper benefitted of 
comments from participants to the APE-INV NameGame workshops. We are also grateful to Nicolas Carayol, 
Lorenzo Cassi, Stephan Lhuillery and Julio Raffo for providing us with core data for the two benchmark 
datasets. Monica Coffano and Ernest Miguelez provided extremely valuable research assistantship. Andrea 
Maurino's expertise on data quality has been extremely helpful. 
2 Access information for PatStat at: http://forums.epo.org/epo-worldwide-patent-statistical-database/ - last 
visited: 12/13/2012 

http://www.esf-ape-inv.eu/
http://www.esf-ape-inv.eu/
http://db.kites.unibocconi.it/
http://forums.epo.org/epo-worldwide-patent-statistical-database/


How To Kill Inventors: Testing The Massacrator
©

 Algorithm For Inventor Disambiguation 

 4 

In what follows, we first describe the general workflow (cleaning & parsing  

matching  filtering) of the Massacrator© 2.0 algorithm (section 2). Then, in section 3, 

we present our calibration methodology for the filtering stage, which crucially affects the 

algorithm's performance In section 4 we perform a validation exercise, based on two 

"benchmark" datasets. In the same section, we move on to apply the validated algorithm 

to the entire PatStat data, in order to generate the APE-INV inventor database. Section 5 

concludes.  

2. An Overview of Massacrator© 2.0 

Disambiguation of inventors consists in assigning a unique code to several 

inventors listed on different patents who are homonyms or quasi-homonyms, and share 

of a set of similar characteristics (e.g. they have the same addresses or patents with the 

same technological content). Inventors with same code are then treated as one 

individual. Following Raffo and Luhillery (2009), we describe disambiguation as three-

step process: 

1. Cleaning & Parsing: the relevant text strings (chiefly, those containing information 

on name, surname and address of the inventor) are purged of typographical 

errors, while all characters are converted to a standard character set. If 

necessary, any relevant string is parsed into a several substrings, according to 

various criteria (punctuation, blank spaces, etc.). Typically, the string containing 

the inventors' complete name (e.g. Duck, Prof. Donald) is parsed into name, 

surname and title (if any). The address is parsed, too. 

2. Matching: the algorithm selects pairs of inventors, from different patents, who are 

likely candidates to be the same person, due to homonymy or similarity of names. 

3. Filtering: the selected pairs are filtered according to additional information 

retrieved either from the patent documentation or external sources. Typical 

information from within the patent documentation are the address (e.g. quasi-

homonyms sharing the same address are believed to be the same person) or 

some characteristics of the patent, such as the applicant's name (e.g. homonyms 

whose patents are owned by the same company may be presumed to be the same 

person) or its technological contents (as derived from the patent classification 

system or patent citations). 

Massacrator 2.0 deals with 2,806,516 inventors listed on the EPO patent 

applications contained in the October 2011 version of PatStat, and it implements the 

three steps as follows: 

2.1 Cleaning & Parsing: 

C&P step 1: characters from an ad hoc list are removed, as well as punctuation and 

double blanks. All remaining characters are converted into plain ASCII3. As 

a result, a new field is created ("Inventor's name"), which contains the 

inventor's surname (possibly composed of several words, as it happens, for 

example, with Spanish surnames) and all of his/her names (including 

second, third or fourth names, and suffixes, such as "junior", "senior", "III" 

etc.). Similar steps are followed to create the following fields: "Inventor's 

address" (street's name and the number), "Inventor's city", “Inventor’s 

county”, "Inventor's region", and "Inventor's state" (to be intended as sub-

national units, as in federal nations such as the US or Germany). 

                                                      
3 See: http://rawpatentdata.blogspot.com/2010/05/converting-patstat-text-fields-into.html)  

http://rawpatentdata.blogspot.com/2010/05/converting-patstat-text-fields-into.html
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"Inventor's country" is derived directly from PatStat  (ISO_3166-2 country 

codes). 

C&P step 2: The original "Inventor's name" string from PatStat is parsed in as many 

substrings as the number of blanks it contains plus one. In the remainder 

of the paper we will refer to these substrings as "tokens". Due to EPO's 

conventions in reporting surnames and names, we can safely assume that 

the first token always contains the inventor's surname (or part of it, in 

case of double or triple surnames), while the last one always contains the 

given name (or part of it, in case of multiple names). Most cases are easy 

to manage since they are written in the form “surname, name” so using 

comma as separator we can easily parse different components. 

  Substrings whose contents matches a list of surname prefixes (such as 

"Van" or "De", respectively typical of Dutch and French/Italian surnames) 

are re-joined to the Surname string. Substrings whose contents matches a 

list of personal titles (such as "Professor" or "Prof.") are stored in a field 

different from the name (intitle). 

2.2 Matching methodology 

Massacrator 2.0 matches not only inventors with identical names, but also 

inventors with similar names, such as those hiding minor misspellings (ex.: "Duck, 

Donald" and "Duck, Donnald") as well as those resulting from the omission or inversion 

of words within the name or surname (ex.: "Duck, Donald D." and "Duck, Donald" or 

"Duck, D. Donald"), for a total of about 10 millions matches. In order to do so, it  mixes 

the Token approach just described with an edit distance approach, in particular one 

based upon the 2-gram distances.  

In detail, the algorithm sorts alphabetically all the tokens extracted from the 

original PatStat inventor's name text strings, without distinguishing between surnames 

and names (for a total of 444,215 tokens; tokens of 2 letters or less are discarded). It 

then computes the 2-gram (2G) distance between consecutive tokens (e.g. tokens 

appearing in row n and n+1 in the sorted list). The 2G can be described as the vector 

distance between two strings of different lengths, normalized by the total length of the 

strings. In our case it will be:  

  (     )  
√∑ (       ) 

  ( )
    

   (  )     (  )
 

Equation 1 

where: 
- G1and G2) are the number of occurrences of the i-th bigram appears in tokens t1 

and t2, respectively;.  

- num(t1) and num(t2) are the number of characters in tokens t1 and t2, respectively; 

- N is the number of possible combinations of two consecutive letters (bigrams) in the 

alphabet of choice (in our case, plain ASCII, from which = 650)
4
. 

                                                      
4 As an example, consider token "ABCABC" as t1 and token "ABCD" as t2. The bigram sets for t1 and t2 will be 
respectively: (AB,BC,CA,AB,BC) and (AB,BC,CD). Applying Equation 1 returns: 

  (     )  
√(   )  

  (   )  
  (   )  

  (   )  
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Once all 2G(t1,t2) distances are computed, consecutive tokens can be assigned to 
"groups", on the basis of their reciprocal distance, as follows:  

 starting from the top of the token list, token in row 1 is assigned to group 1; 

  then token in row 2 is also assigned to group 1 if its 2G distance from token in 

row 1 is less than or equal to an arbitrary threshold value δ(in the case of 

Massacrator 2.0: δ=0.1) ; otherwise the algorithm creates a new group (group 

2); 

  The algorithm then proceeds in a similar fashion for all rows n and n+1 

Once all groups are defined, the algorithm substitutes to each token the number of 

its corresponding group. As a result, each "Inventor's name" string is now replaced by a 

vector of numbers, each of which corresponds to a group of tokens.  Any pair of 

inventors whose "Inventor's name" string contains identical group numbers (no matter in 

which ordered) are then treated as a match.  In case the "Inventor's name" string are 

composed by a different number of tokens, the minimum common number of tokens 

(groups) is considered (see Figure 1 for a practical example). All matches obtained in this 

way are then passed on to the filtering stage. 

Figure 1 - Example of Massacrator “mixed” matching rule 

 

2.3 Filtering 

For each pair of inventors in a match, Massacrator calculates a "similarity score", 

based upon a large set of weighted criteria. By comparing this score to a threshold value 

(Threshold), Massacrator then decides which matches to retain as valid (positive 

matches), and which to discard (negative matches). The criteria considered are 17, 
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grouped in 6 families: network, geographical, applicant, technology, citations, and 

others. A number of these criteria are derived from the original Massacrator© and they 

are quite intuitive, so we do not discuss them (see Table 1 for a short description). We 

discuss instead the Approximated structural equivalence [ASE] criterion, which is not 

present in the original Massacrator©  and is rather complex. 

The concept of Structural Equivalence was first introduced to social network 

analysis by Burt (1987). ASE adapts it to networks of patent citation and it was first 

proposed by Huang et al. (2011) as a method for inventor disambiguation5. The basic 

intuition is that the higher the number of citations two patents have in common, the 

higher the probability that any two inventors of such patents are the same person. 

Consider inventors I’s  and J’s  sets of patents: 

   {                  }              {                  } 

Consider also Pcit as the set of all patents in our dataset receiving at least one 

citation: 

     {           } 

Pi (Pj) and Pcit are then used to compute matrix Di (Dj), which has as lines patents in 

Pi (Pj) and as columns the cited patent in Pcit. If a patent in Pi (Pj) cites a patent in Pcit, 

the corresponding element in matrix Di (Dj) takes value 1 (Dz[pz, pcit]=1; z=i,j); if no 

citation occurs, it takes value zero (Dz[pz, pcit]=0; z=i,j ).  Intuitively, inventors with 

similar matrixes are more likely to be the same person (their patents cite the same 

patents). 

Massacrator then calculates weights WCiting and WCited. The former is the inverted 

number of citations pi (pj), that is the inverse of the number of citations received by 

patent pcit element. These weights allow to give less importance to matrix elements 

Dz[pz, pcit]=1 (z=i,j) corresponding to “popular” patents (that is, patents sending out 

and/or receiving many citations). 

 

  

                                                      
5 Huang et al.'s original formula was proposed to compare inventors with no more than one patent each. We 
have adapted it to the case of inventors with multiple patents. 



How To Kill Inventors: Testing The Massacrator
©

 Algorithm For Inventor Disambiguation 

 8 

 

Table 1 Description of the criteria and classification in 5 families of filtering criterion 

N. Name of the criterion 

[names of variables in squared 

brackets] 

Description 

 Network This family of criteria bases on the intuition that two matched inventors who turn out to be socially 

close are more likely to be the same person. As most patents are invented by two or more 

inventors, we consider each patent as a social tie between the listed co-inventors (Breschi and 

Lissoni, 2004). 

1 Common coinventor 

[Coinventor] 

Any two inventors I and J who have both signed patents with inventor are defined as having a 

common coinventor. 

2 3 degrees of separation  

[Three degrees] 

Any pair of inventors I and J, are said to stand at three degrees of separation when at least one of 

I’s coinventor and one of J’s coinventor have collaborated on the same patent. 

 Geographical This family exploits the inventor’s address information. 

3 City [City] Two inventors share the same city within the address field (eg. Paris, Rome, Dijon) 

4 Province [Province] Two inventors share the same province within the address field (eg. Cote-d’Or) 

5 Region [Region] Two inventors share the same region within the address field (eg. Bourgogne) 

6 State [State] Two inventors have in common the same state within the address field (eg Texas). 

7 Street [Street] Two inventors share the same street and number within the address field. (eg. Boulevard Pasteur 

32) 

 Applicant related variables This family exploits the characteristics of the patent applicant. 

8 Applicant [Applicant] Two inventors have signed at least one patent each for the same applicant. 

9 Small Applicant [Small 

applicant] 

As with Applicant, when the applicant has less than 50 inventors affiliated. If this criterion is 

satisfied also Applicant is satisfied. 

10 Group [Group] two inventors have signed at least one patent each for two distinct applicants belonging to the same 

group 

 Technology classes This family of citeria bases on the IPC code that identifies the technology class of a patent. The 

more digits two codes defining the IPC class have in common, the less the technological distance 

between the patents. The three criteria in this family are strictly related. In the case inventors I and 

J share at least one patent each with 12 digits in common, the other two criteria will be satisfied by 

definition (they have also 6 and 4 digits in common) 

11 IPC 12 [IPC 12] Within the stock of patents attributed to inventor I there is at least one patent with 12 digits of IPC 

code in common with another patent belonging to the inventor's J stock 

12 IPC 6 [IPC 6] Within the stock of patents attributed to inventor I there is at least one patent with 6 digits of IPC 

code in common with another patent belonging to the inventor's J stock 

13 IPC 4 [IPC 4] Within the stock of patents attributed to inventor I there is at least one patent with 4 digits of IPC 

code in common with another patent belonging to the inventor's J stock 

 Citation This family exploits citation links between patents. 

14 Citations [Citation] When a patent belonging to the stock of patents of inventor I is cited by a patent belonging to the 

stock of patents of inventor J, or vice versa, the pair of inventors has in common one citation. 

15 Approximated structural 

equivalence [ASE] 

Discussed in detail by the end of section 3.3 

 Others This family includes two criteria that cannot be classified in all the other four families 

16 Rare surname [Rare surname] At least one among the matched inventors’ surnames is uncommon within the inventor's country. 

We identify rare surnames according to the frequency (by country) of first token (which we know 

to contain surnames) from the "inventor’s name" PatStat field. 

17 Priority date differs for less 

than 3 years [Three years] 

A patent's priority dates is the earliest date of application in the patent’s family6. For each pair of 

inventors we first calculate the minimum temporal distance (that is, the distance in time between 

the most recent among inventor I’s patents and the least recent among J‘s, or vice versa). The 

distribution of minimum distances is very skewed, we set a threshold value of 3 years as a filtering 

criterion (I and J are more likely to be the same person if temporal distance is less than three 

years). 

                                                      
6 For a definition of patent family, see Martinez (2011) 
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Finally the algorithm divides the resulting index by the sum of num(Pi) and num(Pj) 

in order to normalize for the total number of patents of each inventor in the [I,J] pair 

(Equation 2) 

   [   ]

 
∑ ∑ ∑  [       ]           

  [       ]           
           

  
       

     
       

     
       

   (  )     (  )
 

Equation 2 

The higher the index, the closer inventors I and J are to the “perfect” structural 

equivalence (same position in the network of citations). 

Massacrator find only 291469 non-null ASE[I,J]  scores, out of the >10 million 

matches analysed.  The ASE filtering criterion is then considered satisfied by all these 

matches, no matter the score's exact value.  

All the filtering criteria reported in Table 1 are used to compute a similarity score of 

the matched inventors as follows: 

   ∑    

  

   

 

where xi,m is a dummy variable that equals 1 if match m meets criterion i, 0 

otherwise. The number of retained (positive) matches depends upon the value assigned 
to the threshold variable (Threshold); when the similarity score    is larger than 

Threshold inventors in match m are considered to be the same person. This is the most 

delicate aspect of the algorithm implementation because values assigned arbitrarily can 

affect strongly the algorithm’s performance. For this reason, Massacrator 2.0 relies on a 

calibration methodology, based upon a MonteCarlo simulation exercise, to which we now 

move on. 

3. Filtering Calibration 

The final output of the filtering phase must consist in a list of inventor pairs: 

[         ] I   J 

where I and J are the two inventors forming pair m.      is a binary variable that 

takes value 1 if the two inventors in pair m are believed to be the same person (positive 

match) and 0 otherwise (negative match), based on their similarity score m. and the 

chosen Threshold value. Notice that the output varies according to the number of filtering 

criteria we decide to use, and the Threshold value we choose. Calibration serves the 

purpose of guiding our selection of filtering criteria and Threshold value, on the basis of 

the efficiency of the resulting output. 

We measure efficiency in terms of precision and recall: 
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where 

                           
                           
                            
                            

 

We establish whether a positive (negative) match is true (false) by comparing the 

algorithm’s results to information contained in two benchmark databases, namely the 

“Noise Added French Academic" (NAFA) and the “Noise Added EPFL" (NAE). Each 

benchmark database consists of a certain number of inventors, all matched one with the 

other, plus hand-checked information on whether the match is negative or positive. NAFA 

contains information on 530 inventors from France, 424 of which result affiliated to a 

university, the others being homonyms added ad hoc for testing purposes (that is, they 

represent added false positives or "noise"). NAE contains information on 342 inventors, 

312 of which are faculty members at EPFL (the Federal Polytechnic of Lausanne, 

Switzerland), the others being added noise.7  

For any match in the benchmark datasets we define     analogously to     . It 

follows: 

                                  

                                

                                 

                               

 

(Equation 3) 

We expect to observe a trade-off between precision and recall; any identification 

algorithm can decrease the number of false positives only by increasing the number of 

false negatives and vice versa. The smaller the trad-off, the better the algorithm. 

However, to the extent that a trade-off exists, we want to calibrate the algorithm in order 

to: 

- discard suboptimal sets of filtering criteria, namely those sets which increase recall by 

decreasing too much precision (and vice versa) 

- choose among optimal sets, according to the research objectives (some of which may 

require precision to be sacrificed to recall, or vice versa).  

We proceed in three steps. First, by means of a MonteCarlo simulation exercise, the 

algorithm generates a large number of observations, each of which consists of a random 

set of weights assigned to the filtering criteria, a Threshold value, and the corresponding 

results in terms of precision and recall (Data generation step).  

Second, the simulation results are split into two sets (dominant vs dominated), with 

the dominant results further split into three regions of interest, each of which is 

characterized by a different mix of precision and recall (Mapping step).  

                                                      
7 More precisely, NAFA and NAE contain matches between an inventor and one of his/her patents, and another 
inventor and one of his/her patents, plus information on whether the two inventors are the same person, 
according to information collected manually. Having been hand-checked, the matches in the benchmark 
databases are expected to contain neither false positives nor false negatives. Notice that both NAFA and NAE 
are based upon the PatStat October 2009 release. A detailed description is available online (Lissoni et al., 2010) 
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Finally, weights are assigned to the filtering criteria, according to the desired results 

in terms of precision and recall  (Weight calibration). Notice that weights are binary 

values (0,1), which amounts to say that our weight calibration consists in including some 

filtering criteria (1) and excluding others (0). However, extensions of Massacrator© may 

be conceived, which make use of continuous weights (comprised between 0 and 1). 

Sections 3.1, 3.2 and 3.3 describe in details the three steps. 

Table 2 Satisfied criteria in benchmark datasets, x
k
 

 
NAE (EPFL) 

NAFA (French 
academics) 

City 0.15 0.24 

Province 0.01 0.3 

Region 0.02 0.42 

State 0.02 0 

Street 0.04 0.02 

IPC 4 0.32 0.31 

IPC 6 0.2 0.19 

IPC 12 0.1 0.07 

Three Years 0.49 0.44 

Applicant 0.22 0.25 

Small Applicant 0.06 0.03 

Group 0.01 0.02 

Coinventor 0.09 0.1 

Three Degrees 0.13 0.12 

Citations 0.08 0.08 

Rare Surname 0.07 0.05 

ASE 0.07 0.06 

Table 3 Correlation between criteria k1 and k2 corr(x
k1

., x
k2

.) 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. Cit

y 
1 0.45 0.3 -0.02 0.18 0.21 0.17 0.12 0 0.28 0.05 0.11 0.15 0.17 0.12 0.05 0.09 

2. Pro
vince 

0.45 1 0.79 0 0.02 0.21 0.17 0.2 -0.01 0.26 0.02 0.11 0.28 0.28 0.16 0.09 0.12 

3. Re

gion 
0.3 0.79 1 0 -0.01 0.15 0.13 0.17 -0.07 0.24 -0.01 0.09 0.25 0.23 0.15 0.09 0.1 

4. Sta

te 
-0.02 0 0 1 0.02 0.02 0.01 0.03 0.02 0.06 -0.02 0.01 0.02 0.03 0.01 0.06 0 

5. Str

eet 
0.18 0.02 -0.01 0.02 1 0.08 0.11 0.05 0.03 0.11 0.08 -0.01 0.03 0.06 0.07 0 0.07 

6. IPC 

4 
0.21 0.21 0.15 0.02 0.08 1 0.71 0.43 -0.01 0.35 0.16 0.06 0.27 0.27 0.29 0.07 0.26 

7. IPC 

6 
0.17 0.17 0.13 0.01 0.11 0.71 1 0.6 0.08 0.37 0.19 0.03 0.29 0.29 0.33 0.07 0.31 

8. IPC 

12 
0.12 0.2 0.17 0.03 0.05 0.43 0.6 1 0.15 0.3 0.16 0.02 0.32 0.3 0.33 0.05 0.3 

9. 3 

Years 
0 -0.01 -0.07 0.02 0.03 -0.01 0.08 0.15 1 0.13 0.08 0.03 0.16 0.16 0.08 -0.06 0.13 

10. Ap

plicant 
0.28 0.26 0.24 0.06 0.11 0.35 0.37 0.3 0.13 1 0.34 0.1 0.34 0.37 0.31 0.07 0.3 

11. Sm
all Applicant 

0.05 0.02 -0.01 -0.02 0.08 0.16 0.19 0.16 0.08 0.34 1 -0.01 0.16 0.16 0.19 0.02 0.19 

12. Gro

up 
0.11 0.11 0.09 0.01 -0.01 0.06 0.03 0.02 0.03 0.1 -0.01 1 0.05 0.05 0.04 -0.01 0.04 

13. Coi

nventor 
0.15 0.28 0.25 0.02 0.03 0.27 0.29 0.32 0.16 0.34 0.16 0.05 1 0.84 0.28 0.13 0.3 

14. 3 

Degrees 
0.17 0.28 0.23 0.03 0.06 0.27 0.29 0.3 0.16 0.37 0.16 0.05 0.84 1 0.29 0.11 0.32 

15. Cit

ations 
0.12 0.16 0.15 0.01 0.07 0.29 0.33 0.33 0.08 0.31 0.19 0.04 0.28 0.29 1 0.06 0.47 

16. Rar
e Surname 

0.05 0.09 0.09 0.06 0 0.07 0.07 0.05 -0.06 0.07 0.02 -0.01 0.13 0.11 0.06 1 0.04 

17. AS

E 
0.09 0.12 0.1 0 0.07 0.26 0.31 0.3 0.13 0.3 0.19 0.04 0.3 0.32 0.47 0.04 1 
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3.1. Data generation 

We generate data for calibration as follows: 

1. Vectors of criteria: for each pair of inventors m, a set of k dummy variables xk
m 

(k=1…17) is generated, each of them corresponding to one of the 17 filtering 

criteria described in section 2.3. xk
m takes value 1 if the filtering criterion is 

satisfied at least once by the inventors’ pair, zero otherwise. Tables 2 and 3 report 

the percentage of pairs satisfying each criterion and the resulting correlation 

matrix. 

2. Vectors of weights and computation of similarity scores: We draw randomly W 

vectors of weights from a uniform Bernoulli multivariate distribution, where W is 

set to 2000. The dimensions of the multivariate distribution are as many as the 

number of variables in vector x (i.e. K=17). Each draw generates a different 
vector of weights   , where each k-th weight (ωk

w) can take value one or zero 

(i.e. binomial weight). Each pair of matched inventors from NAFA and NAE 

benchmark databases is then weighted as follows: 

                 

where:                  {           }                                             
and sizes of the matrixes are:   [    ]    [    ]      [   ]. 

Binomial weights can be interpreted as a way to exclude/include randomly the k-
th filtering criterion in the xm set. The product of two vectors xm and    returns in 

the αm,w similarity score of match m, for a specific set w of weights. 

3. Threshold value : In order to determine whether a match is positive or negative 
the algorithm compares each similarity score          and         to a Threshold 

value. We treat the latter as a parameter subject to calibration, too. Therefore, we 
add to each vector of weights   , a random threshold value, extracted from a 

uniform distribution with upper bound 4 and lower bound zero:  

            (   ) 

4. Observations: Each vector of weights w generates 2817      values in case of 

NAFA and 1011      values in case of NAE, one for each inventor pair in the 

dataset. They come along with a threshold value (Thresholdw), which allows us to 
define       as follows 

                          
                           

   {          }

 

By comparing       and     as in Equation 3, we then compute the number of true 

(false) positives (negatives) obtained by applying different sets of weights and threshold 
values [  , Thresholdw]. That is, we generate 4000 records (2000 for NAE and 2000 for 

NAFA), to be used in our calibration exercise, each record being characterized by a 

different combination of precision rate, recall rate,  vectors of weights and threshold 

value. 

Figure 2 is a scatter plot for the precision and recall rates, where dots correspond to 

observations and dot colors indicate the relative threshold value. The figure shows the 

extent of the trade-off between precision and recall. It also shows how the trade-off 
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depends on the threshold value: higher precision and lower recall for higher thresholds, 

and vice versa. Yet, we observe that for different threshold values we can obtain a 

similar combination of precision and recall, depending on the values assigned to weights 

wk (overlapping regions of dots). Also figure 3 is a scatterplot for precision and recall 

rates; in this case the dots are grouped according to the benchmark databases they refer 

to, NAFA and NAE. We notice that NAFA dots tend to exhibit higher precision rates, given 

the recall rate, and vice versa; this suggests that our algorithm fares better when applied 

to NAFA than to NAE, that is, it is sensitive to the benchmark chosen for calibration.  

Figure 2 -  Precision and Recall values according to different threshold 

(t) values (4000 sets of weights) 

  

Figure 3 - Precision and Recall values according to NAFA and NAE 

datasets (4000 sets of weights) 
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3.2. Mapping 

This second step identifies the most efficient combinations of weights with respect 

to pre-defined objective regions: high precision, high recall and balanced mix of recall 

and precision levels. Outcomes (observations) in each region are first split in two groups: 

dominant and dominated. An outcome is dominated whenever another outcome exists 

which has both higher precision and higher recall; it is dominant whenever no such other 

outcome exists. 

                  ( )   {                   (   )            (   )          (   )         (   )} 

                   (  )   {                    (   )            (   )          (   )         (   )} 

Dominant outcomes can be seen in figure 3 as dots at the upper frontier of the 

cloud of observations. If we consider separately the clouds for NAFA and NAE results, we 

would obtain two distinct sets of dominant outcomes, one for each benchmark dataset, 

as in figure 48. Vertical lines in the figure identify nine areas, three of which include 

outcomes corresponding to our objectives of high precision, high recall and balanced 

results. In particular, the high precision area includes all dominant outcomes with 

precision rate higher than 0.7, and recall rate between 0.5 and 0.65; the high recall 

region includes all dominant outcomes with a recall rate higher than 0.65, and precision 

rate between 0.5 and 0.7; the balanced results region includes all dominant outcomes 

with a recall higher than 0.65 and precision higher than 0.7. 

Figure 4 - Dominant Solutions for NAE and NAFA benchmarks 

 

Notice that two other areas of potential interest are “maximum precision” and 

“maximum recall” (see figure 4). However, these are not reasonable objectives to 

                                                      

8 The NAFA and NAE frontiers in figure 6, include not only the most extreme points, but are extended to include 
all outcomes with precision and recall values higher than          (   )-0.02 and       (   )-0.02 for any   . This 

will turn out useful for the ensuing statistical exercise.  
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pursue, as they come at too high a cost in terms of recall and precision, respectively 

(e.g. to achieve max precision we should stand a recall rate of less than 0.5, which is 

worse than the result of just guessing). 

We also calculate the number of positive weights characterizing the sets of weights 

within the region of interest (AVG nr filtering  criteria positively weighted). In the 

Balanced region for the NAFA benchmark of Figure 4, we have 132 vectors of weights, 

one for each algorithm run falling within the region, having on average 8.77 filtering 

criteria positively weighted. However, we count the number of positive weights assigned 

to criteria with integer numbers, then we can conclude that the 132 observations are on 

average characterized by nine positive weights.. 

3.3. Weight Assignment and threshold selection 

Once defined the three regions of interest, we assess which of the filtering criteria 

are over-represented (or under-represented) within each region, and consequently we 

select them for inclusion in the vector of weights representing the calibrated 

parametrization of the algorithm. Criterion k is over-represented (under-represented) if 

the expected value of its weight E[ωk
.] in the region of interest is significantly higher 

(lower) than 0.59. 

We test the over-representation (under-representation) hypothesis by means of 

one-tail t-tests, with 95% significance, as follows:   

 Over-representation test for criterion k  H0: E[ωk
.]=0.5   H1: E[ωk

.]>0.5  

 Under-representation test for criterion k   H0: E[ωk
.]=0.5   H1: E[ωk

.]<0.5 

We then proceed by including in the algorithm all over-represented criteria (ithat is, 

we assign them weight ωk=1), and excluding the under-represented ones (assign ωk=0), 

depending on the objective region.   

Table 4a and 4b report for each filtering criterion, the sample mean of its weight 

and the p-values of the one-tail t-tests. Separate tests are run for NAFA and NAE 

benchmark datasets and for the three regions of interest.  

For illustration consider City and State criteria from table 4a (NAFA dataset) in the 

Balanced precision-recall region10.  

We observe a sample mean equal to 0.42 for City criterion, which translates into a 

rejection of the null hypothesis in the under-representation test (p-value=0.03), but not 

in the over-representation test (p-value=0.97). As the City criterion is significantly 

under-represented in the observations characterized by Balanced objective, then we 

exclude it by assigning to city criterion a zero-weight (ωCity=0).  

                                                      
9 Remember that ωk

W  is a random variable with expected value equal to 0.5. By definition, any sample with a 
different mean cannot be randomly drawn, and must be considered either over- or under-represented by 
comparison to a random distribution. 
10 Regression analysis can be applied to the same set of results in order to estimate the marginal impact of 
each filtering criterion and the Threshold on either precision and recall, other things being equal. In general, we 
expect all filters to bear  a negative influence on recall (in that they increase the number of negative matches, 
both true and false), and a positive influence on precision (they eliminate false positives).  
In case the estimated impact of a  criterion is not significantly different than zero for recall, but positive for 
precision, then it is desirable to include it in any parametrization, as it increases precision at no cost in terms of 
recall. Conversely, any filter with zero impact on precision, but significantly negative for recall, ought to be 
excluded from any parametrization, as it bears a cost in the terms of the latter, and no gains in terms of 
precision. We have conducted this type of analysis, and found it helpful to understand the relative importance 
of the different filtering criteria. We do not report it for reasons of space, but it is available on request.  
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On the contrary, for the State criterion, the null hypothesis cannot be rejected 

either in the under-representation test nor in the over-representation test (p-values 

being respectively 0.64 and 0.36). This means that t-tests do not give a clear (and 

statistically significant) evidence to help us deciding whether to include or exclude the 

State criterion. In this case we give a positive weight to the State criterion only if it 

contributes to reach, in the calibrated parametrization, the average number of positively 

weighted filtering criteria  characterizing the  observations in the objective region. (that 

is,  if the positively weighted criteria selected in the calibrated parametrization are less 

than the nine observed on average in the Balanced case, State is included).  

Results of the tests provide us with a guide for choosing the filtering criteria to 

include (assign positive weight) in calibrated parametrization of the algorithm, according 

to the precision and recall objectives we aim at. For sake of simplicity we identify the 

positively weighted criteria with an asterisk in table 4a and 4b. 

In the case of NAFA benchmark, whatever the objective region, network criteria are 

always assigned a positive weight. In case of NAE only Three degrees is assigned a 

positive weight, for all the three regions.  

Table 4a - Averages [H0: E[ω
k

.]=0.5 H1: E[ω
k

.]>0.5, H0: E[ω
k

.]=0.5 H0: E[ω
k

.]<0.5] 

 
Balanced High Precision High Recall 

NAFA  
(French Academics) Mean 

Pvalue 
H0: E[ωk

.]=0.5  
H1: E[ωk

.]>0.5 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]<0.5 Mean 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]>0.5 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]<0.5 Mean 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]>0.5 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]<0.5 

Network variables 
         Coinventor 0.67* 0 1 0.75* 0 1 0.52* 0.29 0.71 

Three Degrees 0.48* 0.7 0.3 0.67* 0 1 0.57* 0.02 0.98 
Geographical variables 

         City 0.42 0.97 0.03 0.29 1 0 0.47 0.83 0.17 
Province 0.93* 0 1 0.71* 0 1 0.72* 0 1 
Region 0.93* 0 1 0.77* 0 1 0.81* 0 1 
State 0.48* 0.64 0.36 0.51* 0.4 0.6 0.46 0.89 0.11 
Street 0.33 1 0 0.38 1 0 0.49 0.61 0.39 
Applicant related variables 

         Applicant 0.49* 0.57 0.43 0.53* 0.22 0.78 0.51* 0.34 0.66 
Small Applicant 0.52* 0.36 0.64 0.41 0.98 0.02 0.56* 0.05 0.95 
Group 0.52* 0.36 0.64 0.5* 0.53 0.47 0.5 0.5 0.5 
Technology classes 

         IPC 4 0.37 1 0 0.4 0.99 0.01 0.6* 0 1 
IPC 6 0.3 1 0 0.22 1 0 0.52* 0.25 0.75 
IPC 12 0.45 0.89 0.11 0.48* 0.67 0.33 0.51* 0.39 0.61 
Citation related variables 

         Citations 0.45 0.89 0.11 0.46 0.83 0.17 0.49 0.66 0.34 
ASE 0.45 0.89 0.11 0.44 0.91 0.09 0.47 0.79 0.21 
Other filtering criteria 

         Rare Surname 0.6* 0.01 0.99 0.6* 0.01 0.99 0.5 0.5 0.5 
Three Years 0.39 0.99 0.01 0.43 0.93 0.07 0.16 1 0 
Nr of filtering criteria and threshold 

         AVG nr filtering  criteria 8.77 
  

8.57 
  

8.86 
  AVG threshold 2.22 

  
3.16 

  
0.76 

  Observations 132 
  

129 
  

214 
  

The family of geographic criteria plays an important role in the NAFA benchmark, 

but not in the NAE benchmark. This is not surprising given the low quality of geographical 

information for Swiss inventors available on PatStat data (see Lissoni et al., 2010). 

Applicant and Technology families show a mixed evidence, the choice of weights being 

specific to any combination of benchmark dataset and objective regions. The Citation 

family does not play any role in NAFA dataset, while it has to be weighted positively in 

NAE dataset. Among the remaining criteria (others family), having a rare surname has to 

be included in NAFA database when objective regions are Balanced and High precision, as 

well as Three years in case of NAE benchmark database. 

Once defined the vector of weights for the calibrated parametrization of the 

algorithm, a threshold value is needed, which we calculate as the average threshold 
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value within each region. For instance,  in the Balanced region of the NAFA benchmark, 

the average threshold value for the 132 outcomes (dots) is 2.22. It means that the 
similarity score      must be equal to or higher than 2.22 for any match to be considered 

positive. As expected, the average threshold value is highest in the high precision region 

and lowest in the high recall one (see tables 4a and 4b). 

 

Table 4b Averages [H0: E[ω
k

.]=0.5 H1: E[ω
k

.]>0.5, H0: E[ω
k

.]=0.5 H0: E[ω
k

.]<0.5] 

 
Balanced High Precision High Recall 

NAE  
(EPFL Scientists) Mean 

Pvalue 
H0: 

E[ωk
.]=0.5  

H1: 
E[ωk

.]>0.5 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]<0.5 Mean 

Pvalue 
H0: E[ωk

.]=0.5  
H1: E[ωk

.]>0.5 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]<0.5 Mean 

Pvalue 
H0: E[ωk

.]=0.5  
H1: E[ωk

.]>0.5 

Pvalue  
H0: E[ωk

.]=0.5 
H1: E[ωk

.]<0.5 

Network variable 
         Coinventor 0.56* 0.17 0.83 0.51 0.33 0.67 0.54 0.17 0.83 

Three Degrees 0.58* 0.08 0.92 0.54* 0.1 0.9 0.59* 0.02 0.98 
Geographical variables 

         City 0.6* 0.05 0.95 0.55* 0.04 0.96 0.67* 0 1 
Province 0.42 0.92 0.08 0.41 1 0 0.42 0.96 0.04 
Region 0.51 0.41 0.59 0.47 0.84 0.16 0.42 0.96 0.04 
State 0.46 0.76 0.24 0.54 0.08 0.92 0.56* 0.1 0.9 
Street 0.42 0.92 0.08 0.38 1 0 0.56* 0.1 0.9 
Applicant related variables 

         Applicant 0.94* 0 1 0.75* 0 1 0.93* 0 1 
Small Applicant 0.63* 0.02 0.98 0.49 0.67 0.33 0.64* 0 1 
Group 0.43 0.88 0.12 0.46 0.92 0.08 0.53 0.27 0.73 
Technology classes 

         IPC 4 0.38 0.98 0.02 0.62* 0 1 0.75* 0 1 
IPC 6 0.38 0.98 0.02 0.52* 0.26 0.74 0.56* 0.1 0.9 
IPC 12 0.69* 0 1 0.65* 0 1 0.56 0.07 0.93 
Citation related variables 

         Citations 0.54* 0.24 0.76 0.59* 0 1 0.52 0.33 0.67 
ASE 0.53* 0.32 0.68 0.52* 0.26 0.74 0.56* 0.1 0.9 
Other filtering criteria 

         Rare Surname 0.28 1 0 0.5 0.46 0.54 0.41 0.98 0.02 
Three Years 0.83* 0 1 0.65* 0 1 0.23 1 0 
Nr of filtering criteria and threshold 

         AVG nr filtering chriteria 9.17 
  

9.15 
  

9.43 
  AVG threshold 1.42 

  
2.42 

  
0.75 

  Observations 72 
  

336 
  

135 
  

 

4. Validation and Application to PatStat data 

Following our calibration exercise, we produced three versions (parametrizations) of 

Massacrator©, one for each precision-recall objective, with weights and threshold 

calculated accordingly.  We then checked to what extent each of these parametrizations 

is satisfying in terms of the precision and recall rates it produces, conditional on its 

objective. Precision and recall rates are measured, once again, against the NAFA and NAE 

benchmarks. 

We run each version of Massacrator©, once for each combination for each 

benchmark, for a total of 6 six runs, with the following results: 

 NAFA dataset - precision oriented parametrization  -> Precision:92% Recall:54% 

 NAFA dataset - recall oriented parametrization -> Precision:56% Recall:93% 

 NAFA dataset - balanced parametrization -> Precision:88% Recall:68% 

 NAE dataset - precision oriented parametrization -> Precision:79% Recall:62% 

 NAE dataset - recall oriented parametrization -> Precision:59% Recall:85% 

 NAE dataset - balanced parametrization -> Precision:74% Recall:70% 
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Notice that by calibrating our filtering step on either NAE or NAFA we obtain 

different results. This is because each dataset has a number of semantic peculiarities 

(variety of names and; quality of information contained in the addresses; variety in the 

technological classes and citations of patents), which are mirrored by differences in the 

number and type of criteria selected at the calibration stage. 

This forced us to choose one and only benchmark dataset to perform our final 

calibration, the one leading to the production of the APE-INV dataset. Our choice fell on 

NAFA, which contains higher quality information for addresses, and more name variety. 

For the three alternative parametrizations of Massacrator algorithm we then obtain the 

following disambiguation results11: 

 NAFA calibrated, precision-oriented algorithm: from 2,806,516 inventors in the 

original PatStat database (for EPO patents) we obtain 2,520,338 disambiguated 

inventors (unique codes) in APE-INV, that is -10% 

 NAFA calibrated, recall-oriented algorithm: from 2,806,516 inventors to 1,697,976  

unique codes, that is -39% 

 NAFA calibrated, balanced algorithm: from 2,806,516 inventors to 2,366,520 

unique codes, that is -16% 

As expected the largest reduction in the number of inventors is obtained with the 

recall-oriented algorithm, the smallest with the precision-oriented one. More importantly, 

when applying data disambiguated with different precision-recall objectives to classic 

problems in the economics of innovation or science and technology studies, we will get 

different results. As an illustration, consider three classical topics: inventors' productivity, 

mobility, and social networking (on the latter topic, see Borgatti et al., 2009 for technical 

vocabulary and basic concepts). Table 5 reports descriptive statistics for each topic, as 

resulting from datasets built by using different parametrizations of Massacrator, namely: 

 Avg. Patent per inventor: it is the average number of patents per inventor in the 

whole dataset 

 Star inventors’ productivity: it is the share of patents belonging to the 1000 most 

prolific inventors in the database. 

 International mobility index: It is the share of inventors with at least two different 

country addresses, over the total number of inventors with at least two patents 

(inventors with only one patent are not considered, as they can have only one 

address, by definition). 

 Connectedness: it is the percentage of connected nodes over the total number of 

nodes in the network of inventors active between 2000 and 2005 in the fields of 

chemistry and pharmaceuticals (from now on: Net2000/05) 12. Isolated nodes 

represent individuals with no co-inventorship relationships over the period 

considered.  

 Centralization-degree: it is a degree-based measure of graph centrality for 

Net2000/05, as defined in Freeman (1979). It measures the extent at which the 

                                                      
11 The figures presented here are the result of further adjustments we introduced in order to solve transitivity 
problems. Transitivity problems may emerge for any triplet of inventors (such as I, J, and Z) whenever two 
distinct pairs are recognized to be same person (e,g, I & J and J and Z), but the same does not apply to the 
remaining pair (I & Z are not matched, or are considered negative matches).  In this case we need to decide 
whether to revise the status of I & Z (and consider the two inventors as the same person as J) or the status of 
the other pairs (and consider either I or Z as different persons than J). When confronting this problem, we 
always opted for considering the two inventors the same person, then I,J and Z are the same individual 
according to Massacrator.. 
12 Fields of chemistry and pharmaceuticals are defined as in Schmoch (2008). We consider only these fields, 
and years from 2000 and 2005, for ease of computation. Co-inventorship is intended as a connection between 
two inventors having (at least) one patent in common.  
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graph structure is organized around focal points, and it reaches a maximum value 

for a star graph. 

 Density: it is the number of observed ties in Net2000/05, over the maximum 

number of possible ties (i.e. the number of ties in a fully connected network with 

the same number of nodes). It measures the intensity of connections between 

inventors.  

Table 5 Descriptive statistics of inventorship: Massacrator runs with different 

parametrizations on the whole PatStat dataset 

 (1) (2) (3) (4) (5) (6) 

Parametrization Avg Patent 
per inventor 

Star inventors’ 
productivity 

International 
mobility index 

Connected 
nodes % 

Centralization
-degree % 

Density % 

Balanced 2.1705 3.56% 1.02% 95% 0.156 0.0034 
Recall-oriented 3.0244 8.19% 4.92% 95.21%  0.515 0.0053 
Precision-oriented 2.0381 3.48% 0.56% 95%  0.149 0.0032 

As expected the productivity index in column (1) is higher for the recall-oriented 

parametrization of the algorithm, on the basis of which we treat a larger number of 

inventors as the same individual. The opposite happens with precision-oriented 

parametrization. As similar consideration is valid also for statistics on star inventors, 

which are assigned a maximum of 8% of patents when using a recall-oriented 

parametrization and only 3.5% with a precision-oriented parametrization. As for 

international mobility, its index ranges from 0.56% to 4.92% according to the 

parametrization choice. While productivity measures do not change much when moving 

from the Precision-oriented parametrization to the Balanced one, the same cannot be 

said for mobility measures: in this case, even the modest reduction in precision (increase 

in recall) introduced by changing algorithm changes considerably the value of the 

indicator. 

As for network measures, Connectedness is not very sensitive to the algorithm 

parametrization. The same cannot be said for Centralization and Density, both of which 

increase considerably along with recall and decline with precision.     

 

5. Conclusions and further research 

In this paper we have presented a general methodology for inventor 

disambiguation, with an application to EPO patent data. We have argued that producing 

high quality data requires calibrating the choice of weights by means of simulation 

analysis. Calibration is necessary to: 

1. identify "frontier" results, that is the set of efficient weights that maximise the 

precision rate, conditional on a given recall rate (or, vice versa, recall conditional on 

precisions); in this way, one excludes inefficient sets of weights and make less 

arbitrary choices; 

2. allow the researcher to choose between precision-oriented, recall-oriented or 

balanced"algorithms, or to combine them.  

Choosing one algorithm over the others may be desirable when the research 

purposes require minimization of either errors of type I or errors of type II (respectively, 

false positives and false negatives). For example, early research on academic patenting 

by Lissoni et al. (2008) was aimed at proving that official estimates of the number of 

academic patents (namely, patents signed by at academic scientists) in Europe were 

wrong by defect, and thus needed to minimize errors of type I.  A more recent study on 

the same topic, on the contrary, has produced a longitudinal database of academic 
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patenting in Italy, with the primary objective of detecting trends (Lissoni et al. 2012). 

With that objective in mind, there is no reason to prefer minimization of either errors of 

type I or errors of type II, so the authors make use of the APE-INV inventor database 

described in this paper, with balanced parametrization.  

More generally, we have shown how different calibrations lead to different results 

for the fundamental indicators of studies on inventors' productivity, mobility, and 

networking. This means that the results of several studies recently published on these 

topics, which do not provide details on the disambiguation methods they followed, could 

turn out not be robust to the calibration choices presented here (this include some work 

by one us, such as: Balconi et al., 2004 on networks; or Breschi and Lissoni, 2009, on 

mobility). For sure, future research results in these area will have to be screened more 

closely, and disambiguation methods made explicit. 

Besides conducting robustness test for different disambiguation parametrizations, 

authors may also pursue the road of combining the results of different calibrations in 

order to increase data quality. This can be done by comparing the results, for each pair 

of records, of the different calibrations and choose on the basis of whether a majority of 

the algorithms suggest the same results. The combination principles can be extended not 

only to different calibration algorithms, but to altogether different algorithms, as 

discussed by Maurino et al. (2012). 

One last strategy for further data quality improvements can consist in sharing more 

openly inventor data and collecting feedbacks from other users. This is an integral part of 

the APE-INV project, for which the inventor database described in this paper was 

produced and made available online (http://www.ape-inv.disco.unimib.it/). Users who 

check manually the inventor data they download, or match them to other sources of 

information on individuals (such as lists of academics or authors of scientific papers) do 

inevitably find a number of false negatives or false positives. The same holds if their 

research requires contacting the inventors for interview or survey purposes. This user-

generated information is extremely valuable, and we believe it is worth investing in 

finding ways to collect it. To this end we have set up the APE-INV User’s Feedback 

project, which invites users to come back to the APE-INV data website and upload either 

their proposed corrections to the APE-INV inventor dataset, or the results of their own 

disambiguation exercises based on the same set of data (for a full description of the 

project, see Den Besten et al., 2012).  

Collective use and quality improvement of inventor data would also serve the 

purpose of minimizing social cost of research, by minimizing the duplicative data 

disambiguation efforts pursued by the many researchers in the area. We are confident 

that the APE-INV database will contribute decisively in this direction. 
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