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La propagation des grandes idées? L'impact de l'activité de brevet des firmes leader sur les 

inventeurs locaux. 

Résumé 

Le document examine si l’activité de brevetage des entreprises les plus inventives affecte le 
nombre de brevets délivrés à d'autres inventeurs locaux dans la même zone métropolitaine 
aux États-Unis. La théorie économique prédit que les effets positifs des économies 
d'agglomération peuvent être contrebalancés par une pression à la hausse sur les salaires, 
laquelle est plus prononcée à court terme et au sein de chaque classe de technologie. 
L'analyse empirique exploite la structure en panel des données pour inclure différents effets 
fixes, et adopte une approche avec variable instrumentale pour démontrer la causalité. Les 
résultats montrent que l'effet est globalement positif, qu’il est plus marqué avec un décalage 
dans le temps, et qu’il ne se limite pas à la même catégorie de technologie, ce qui suggère 
que la diffusion de connaissances à la Jacob entre secteurs domine les autre sources 
d'économies d'agglomération intra-sectorielles, y compris les mécanismes de partage et 
d’appariement. Les implications pour la politique de développement local sont discutées. 

Mots-clés : diffusion locale de connaissances, brevets, innovation. 

Spreading Big Ideas? The effect of Top Inventing Companies on Local Inventors 

Abstract 

The paper investigates whether the patenting activity of the most inventive companies has 
any causal effect on the number of patents granted to other local inventors in the same 
metropolitan area in the United States. Economic theory predicts that positive 
agglomeration economies may be counterbalanced by upward pressure on wages, which are 
stronger within technological classes and in the short term. The empirical analysis exploits 
the panel dimension of the dataset to account for various fixed effects, and adopts an 
instrumental variable approach to prove causality. The results show that the effect is overall 
positive, it is stronger with a time lag, and it is not bounded within narrow technological 
categories, suggesting that Jacob-type knowledge spillovers across sectors tend to prevail 
over other source of agglomeration economies within sectors, including sharing and 
matching mechanisms. The implications for local development policy are discussed. 
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1 Introduction1

In a recent paper, Greenstone, Hornbeck and Moretti (2010, henceforth GHM) discuss the impor-

tance of understanding whether large plant openings raise the productivity of local incumbents.

They �nd a substantial e�ect: �ve years later the opening of a new large plant, the productiv-

ity of incumbent plants located in the same US county is 12% higher. The authors argue that

the �ndings are extremely relevant both for economic theory, since they provide evidence on

the mechanisms underlying the agglomeration of economic activities, and for local development

policies, which often subsidize the location of large industrial investments.

At least since Marshall (1890), we know that knowledge spillovers are one of the leading

mechanisms of agglomeration economics. This paper focuses primarily on this channel, expanding

GHMs' analysis. Exploiting a rich patent database for the United States, I identify Top Inventing

Companies (henceforth TICs) by proxying the company size with the stock of owned patents. I

then assess whether the aggregate number of patents developed by inventors working for TICs

has any causal e�ect on the number of patents granted to other companies (non-TIC) located

in the same Metropolitan Statistical Area (MSA). A priori, the e�ect is not necessarily positive:

in a general equilibrium framework, positive agglomeration externalities (knowledge spillovers,

sharing and learning mechanisms) may be counterbalanced by upward pressures on nominal

wages. Depending on the relative strength of the two mechanisms, the net e�ect could also be

null or negative.

The results show that positive e�ects tend to prevail over negative ones at city level, and

are stronger with a temporal lag. According to the regression results, a 10% increase in the

number of TIC patents leads to an increase of about 2% in the number of non-TIC patents over

the following 4-8 years. However, within narrowly de�ned technological sub-categories, where

negative wage e�ects tend to be stronger due to a higher skill substitutability, the net e�ect is

zero. One interpretation of these �ndings, also supported by additional tests based on citation

data, is that that Jacob-type knowledge spillovers, which are not con�ned within technological

categories and may require more time to produce e�ects, tend to prevail over other more sector-

speci�c source of agglomeration economies, including sharing and matching mechanisms.

Using the NBER/USPTO patent database, I estimate a model where the number of non-TIC

patents produced in a given city, time period, and technological category is a function of the

1Acknowledgements: I thank Kristian Behrens, Chiara Criscuolo, Alfonso Gambardella, Bronwyn Hall,
Andrea Lamorgese, Henry Overman, Olmo Silva, John Van Reenen, two anonymous referees, and participants to
the Patents Statistics for Decision Makers conference (Paris, November 2012) and to the Zvi Griliches Seminar
on Economics of Innovation (Barcelona, July 2011) for useful comments on previous versions of the paper. The
views expressed in the article are those of the author and do not involve the responsibility of the OECD and the
Bank of Italy. Usual disclaimers apply.
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number of TIC patents developed in the same city, period, and category. I exploit the panel di-

mension of the dataset to account for time, city and technology �xed e�ects. Causality is inferred

with two-stage least squares (2SLS) estimations. The instrumental variable for TIC patents is

based on the interaction of the historical presence of TICs in a given MSA with on contempo-

raneous variation in innovation activity of other plants of the same company. Consistently with

economic theory, results show that positive e�ects prevail with a broad sectoral classi�cation

and a time lag, while negative e�ects are stronger in the short run and within narrow technolog-

ical sectors. This evidence is suggestive of the relative importance of cross-industry knowledge

spillovers as a source of agglomeration externalities.

This paper �lls in two important gaps in the related economic literature. First, by providing

empirical evidence on the e�ect of the interaction of heterogeneous actors in cities, it improves

our understanding of urban agglomeration. As Duranton and Puga (2004) forcefully argued,

heterogeneity of workers and �rms is at the root of most of the theories of urban agglomeration,

as interactions within an �army of clones� would not theoretically motivate the existence of

modern cities. It is therefore important to empirically investigate which level of heterogeneity

really matters. Second, the study is related to the wide literature on the economics of innovation

and patenting, by exploring under-investigated aspects of patent data, i.e., the skewness of the

distribution of patents across inventors and companies.

The paper also o�ers interesting insights for policy. It is well known that innovation activity

is highly concentrated in a small number of cities and regions; these spatial disparities have

pushed a number of policies aimed at enhancing local innovation (Agrawal et al., 2012), often

based on subsidizing the location of R&D labs of large companies. Very little is known, however,

about the e�ectiveness of these policies, i.e., whether they produce any additional e�ects on the

innovation performance of local �rms, or, rather, are just a windfall for large companies, at the

taxpayer's cost. The �ndings of this paper are on line with the general conclusions of many

studies assessing the e�ect of cluster policies based on an �agglomeration economies� rationale.2

All in all, although there is a positive e�ect of TIC patents on non-TIC patents, this is likely to

materialize in di�erent sectors than those possibly targeted by the policy, and with some delay.

Furthermore, the fact that agglomeration economies are in place does not automatically imply

that those can be easily triggered by ad-hoc policies.

The next paragraph reviews the relevant literature on patents and innovation; the third one

introduces and discusses the de�nition of TICs; the fourth one describes the empirical method-

ology and the �fth presents the results; the sixth paragraph concludes.

2E.g.: Accetturo and de Blasio, 2012; Duranton, 2011; Martin, Mayer and Mayneris, 2011; Duranton, Mayer
and Mayneris, 2010.
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2 Patents, localized knowledge spillovers, and the size of innova-

tion

Patent data have become extremely popular in the economic literature in the last two decades,

as they represent an easy and accessible way to proxy for innovation activity, which is otherwise

generally very hard to measure. Furthermore, the availability of citation linkages further spurred

more interest in patent data: for the �rst time, researchers had a tool to "trace" knowledge

spillovers, which previously had been considered one of the most di�cult variable to de�ne

empirically. A popular book by Ja�e and Trajtenberg (2005), and the free availability of the

USTPO dataset from the NBER website, also contributed to multiply the empirical applications

based on patent data.

A signi�cant part of this literature has focused on the geographic component of innovation,

with a particular interest in the spatial decay of knowledge spillovers. A seminal contribution by

Ja�e et al. (1993) shows that a cited-citing patent couple is twice as likely to be located in the

same US metropolitan area as a couple of technologically similar patents with no citation links.3

Similarly, Peri (2005) examines the �ows of citations among 147 European and US regions to �nd

that "only 20% of average knowledge is learned outside the average region of origin", and Ja�e

(1989) demonstrates that academic research has large e�ects on the number of private patents

developed in the same US state. Finally, Carlino et al. (2007) use patent data for a cross-section

of US metropolitan areas to investigate the relationship between urban density and innovation

intensity (as measured by patents per capita) �nding a positive and robust association. All

these contributions (and many similar ones which I omit for brevity) highlight that knowledge

spillovers have a geographically limited distance decay.

The nature and causes of knowledge spillovers are still debated. For instance, Breschi and

Lissoni (2009), building on previous contributions by Breschi and Lissoni (2001), Zucker et al

(1998), and Almeida and Kogut (1999), highlight that de�ning localized knowledge spillovers as

an externality can be misleading, as most of the knowledge di�usion may take place through

market interactions - namely the spatially-bounded mobility of inventors among workplaces -

rather than through informal contacts. Using data on US inventors' applications to the European

Patent O�ce, they were able to show that after controlling for inventors' labour mobility and the

related professional network, the role of proximity in explaining knowledge di�usion is greatly

3These �ndings have been strongly criticized by Thompson and Fox-Kean (2005), who argue that the method-
ology underlying the construction of the control group is seriously �awed. With a more robust approach, based
on a �ner technological classi�cation of patents, the main results of the paper disappear. However, Murata et al.
(2013) perform a similar analysis adopting a continuous de�nition of space (i.e., abstracting from MSA bound-
aries) to �nd that, even when controlling for the �ne technological classi�cation, the results of Ja�e et al. (1993)
are con�rmed.
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reduced.

These issues are related to the growing interest in peer e�ects in science and in the spillovers

originating from star scientists. Azoulay et al. (2010) exploit the exogenous variation in the

number of "superstar scientists" in US universities due to the sudden death of these individuals

to estimate the loss in productivity of their collaborators. They �nd an average 5-10% decline in

their average publication rates, starting 3-4 years after the superstars' death and enduring over

time, but no di�erential e�ect for co-located collaborators. Waldinger (2010) estimates the e�ect

of the dismissal of scientists from Germany universities during Nazism. Similarly to Azoulay et

al., he �nds a strong e�ect on coauthors (13-18%), but no signi�cant e�ects at department level.

Therefore, both studies challenge the existence of localized positive spillovers originating from

stars in academic environments.

Similarly, the advocates of the "death of distance" theory argue for a decreasing importance of

the role of spatial proximity following the progress of communication technologies (e.g., Friedman,

2005; Quah, 1999; Cairncross, 1997). On the other side, a few studies maintain that technological

progress has actually increased the scope for proximity for innovative activities due to the greater

importance of face-to-face contacts and agglomeration externalities (e.g., Coyle, 1999). The few

empirical assessments of the issue seem to support the "death of distance" hypothesis (Gri�th

et al., 2011; Ioannides et al., 2008), indeed suggesting that localized knowledge spillovers are

fading over time.

The relationship between highly inventive companies and other inventors have been much

less explored: to the best of my knowledge, contributions on the subject are con�ned to the role

played by academic star scientists on other researchers (e.g., Azoulay et al., 2010; Oettl, 2012),

while industrial patenting is not considered, the only exceptions being Fons-Rosen (2010) and

Agrawal et al. (Forthcoming). Fons-Rosen (2010) uses data on the entry of foreign �rms into

Central and Eastern Europe during the 1990s to analyze the e�ect on knowledge �ows on local

incumbent inventors; he compares the MNEs which won the privatization bids with the control

group of those which also applied to the bid but lost, �nding that winners receive 20% more

citations by local inventors, on average, than losers. Di�erently from this paper, its analysis is

at national level and is limited to patent citations. Agrawal et al. (Forthcoming) explore the

spatial distribution of large and small (patenting) labs across US MSAs, �nding that the birth

rate of new start-ups (de�ned using patents �led for by inventors who were previously employed

by large labs) is higher in metropolitan areas which are more diverse, i.e., where large and small

labs coexist.

Non-TIC patents, however, can be very important for economic growth. Balasubramanian
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and Sivadasan (2011) link patent records to Census �rm data for the US, in order to assess the

impact of patents on �rm performance. They focus in particular on �rms that patent for the �rst

time, and �nd a signi�cant and large e�ect of the �rst patent on �rm growth (but, interestingly,

little change in factor productivity).

For local development policies, patents by smaller innovators are probably more relevant than

patents �led for by TICs. To the extent that the latter are the outcome of formal R&D activity of

large companies, they may have weaker implications on the local economy. Since patenting �rms

are generally large (Balasubramanian and Sivadasan, 2011), they are often multilocated, and the

productivity gains of these inventions are spread across the di�erent plants (and localities).

3 Top Inventing Companies (TICs)

The analysis is based on the NBER/USPTO database, which lists all the patents granted in the

United states from 1975 to 1999.4 For each patent, the database contains the name and city of

residence of the inventor(s), the name of the applicant(s),5 an unique applicant identi�er added

by the NBER working group on patents (based on the standardization of the name of company

and ancillary information), the application and grant year, and the number of citation received.

Patents are classi�ed according to the synthetic technological classi�cation developed by Hall

et al. (2001) who de�ne �ve technological categories: Chemical (excluding Drugs); Computers

and Communications (C&C); Drugs and Medical (D&M); Electrical and Electronics (E&E);

Mechanical.6 Following a common practice in the patent literature, the geographical location of

the patent is derived from the city reported in the �rst inventor's address �eld. More details on

the data, the geographical assignment, and the geocoding process are reported in Appendix A.7

At �rst glance, the abundance of data makes a micro analysis at inventor or applicant level the

most appealing alternative. A deeper view, however, reveals the complexity of such an approach,

because the dataset is about patents, not inventors or applicants, implying that when an inventor

or applicant is not patenting, her location and activity status are unknown. Furthermore, there

is not an unique inventor identi�er in the original dataset, and the only information available is

full name and city of residence. Spelling errors are frequent. As a consequence, the longitudinal

tracking of inventors would require a fuzzy matching of names and cities of residence, with

inevitable errors which can easily be non random (e.g., more frequent in cities where duplicate

4The dataset is described in details in Hall et al., 2001.
5The applicant is the legal entity - either a company or an individual - which owns the right to exploit the

invention. In the large majority of cases, the applicant is the employer of the inventor.
6The sixth technological category, called "other", is a residual classi�cation and is excluded.
7The NBER database has recently been extended until the 2006 or 2008, depending on the version. However,

inventors data are not publicly available yet; without information on the city of residence of inventors,it is not
possible to correctly geolocate the patents, therefore the date cannot be used here.
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surnames are more common, or with a higher rate of inventors with foreign origins). The problem

would be perhaps negligible if the focus was only on very productive inventors or applicants; but

given that I am interested also in occasional inventors, the issue is crucial.

The analysis is therefore run at city level, focusing on the number of patents produced by

two groups of applicants: TICs and other applicants. The classi�cation of patents into the two

groups is based on the total number of patents granted to the applicant over the whole period

of analysis (1980-1999): TIC patents are assigned to the most inventive companies in a given

technological category. There are many di�erent ways in which the �most inventive companies�

can be de�ned: among those, one can adopt a relative cut-o� (e.g., the top 1%), a �xed patent

threshold (e.g., more than 1,000 patents), or a ranking rule. I opt for the last method: the most

inventive companies are de�ned as those ranked among the top 50 in their technological category;

this corresponds to a lower threshold of 247 patents and a maximum of 701 patents across the

�ve categories. The �xed threshold is preferred to using a relative cut-o� as the latter may make

the de�nition of TICs endogenous across categories: stronger positive e�ects of TIC patents on

non-TIC patents increase the number of TIC companies and therefore in�ate the denominator

of the relative cut-o�, increasing the TIC threshold and lowering the number of TIC patents.

This would lead to overestimating of the e�ect of TICs. Another reason to prefer a rank-based

de�nition is that the total number of active �rms is not a very meaningful �gure in the patent

database, as the same �rm may be counted more than once.8 Nevertheless, in the following of

the paper I report a robustness test based on a relative cut-o� which identi�es a roughly similar

number of TICs, being set at the top 5� of patenting companies. The 5� threshold corresponds

to ranks from 48th to 133th across the �ve categories. Results are similar to those obtained from

estimations based on the top 50 threshold. Results based on alternative de�nitions, e.g. limiting

the TIC de�nition to the top 25 or 75 companies, or to companies cumulatively owning 50% of

patents in the category, do not a�ect the main conclusions of the paper either.

Also, since the patent literature o�ers many examples of large companies �ling for patents

for reasons unrelated to new inventions (e.g. patent thickets), and considering that generally

such non-inventive patents are not cited by other patents, I exclude from the analysis all TIC

patents which do not receive any citations. In the robustness section I replicate the analysis with

forward citations weighted patents obtaining comparable results.9

The following step is the de�nition of the temporal dimension of the analysis. Patent data

8The unique identi�er for small companies is derived from name harmonization and it might not be fully
reliable for smaller companies due to spelling errors, homonymy, and changes of name across time; the identi�er
for large companies is somehow more reliable, due to their smaller number and the notoriety of their di�erent
denominations.

9A drawback of using citation-weighted patent counts is the censoring of forward citation information for the
later years in the sample.
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are rather imprecise in the time dimension: usually a patent is granted10 2-3 years after the �rst

application; and it is not possible to know how long an inventor has been working on a patent

before applying for it. Timing when local knowledge spillovers may have e�ect is also di�cult: it

could be while both the source and destination inventors are working on their respective patents,

but it could also happen a few years after the TIC inventor has applied for (or has been granted)

it. By inspecting the data I found that the median and mean value of the citation lag of patents

in the same MSA is four years, and I therefore choose to adopt periods of the same length (Kerr,

2008, also adopt a period of the four years).11 This is a reasonable choice in order to "average

out" some of the measurement error in the temporal dimension. Six time periods of four years

each are therefore de�ned, spanning from 1976 to 1999. Econometric analysis is generally limited

to the last three periods (from 1988 to 1999), as MSA controls are unavailable for the �rst three

periods. I de�ne six periods, however, as the �rst is used to build the instrumental variables

and lagged variables, and the second and the third are used to calculate lags of the patent

variables. Table 2 lists the �rst 10 TICs for each technological category. As it is possible to

see, only few companies (e.g., General Electric and General Motors) appear in more than one

list. Table 1 reports some basic descriptive statistics for TICs and non-TICs: there are only 164

TICs de�ned, but they account for around 30% of all patents in the sample, and for around 20%

of the inventors. Patents granted to TICs also receive more citations than patents granted to

non-TICs, on average (5.11 vs. 3.74).

Being a residual category, the non-TICs are a heterogeneous group of companies. Since the

distribution of patents across companies is very skewed - with many �rms owning one or few

patents, and a small number of companies owning many of them - the majority of �rms in the non-

TICs category is represented by occasional inventors: the median �rm owns just one patent, and

the average �rm 8.9 .(see Table 1). The fact that their patent stock is small does not obviously

imply that these �rms are small in term of employment or turnover; on the contrary, available

evidence suggests that patentees are larger businesses than non patentees (Balasubramanian and

Sivadasan, 2011; Andrew, Criscuolo and Menon, 2014). A detailed characterization of these �rms

is not possible with available data. However useful insights on the di�erence between patenting

and non patenting �rms can be found in papers using patent data matched with US business

register records (Balasubramanian and Sivadasan, 2011) or with the Survey of Industrial R&D

10The reason why I use the grant year, rather than the application year, is to avoid the bias given by data
truncation. More precisely, using the application year would automatically exclude all the patents not granted
(but applied for) before 1999, as they are not included in the dataset. This subsample could easily be non-random,
e.g. better patents may take longer to be examined, etc. However, robustness tests (available upon request) based
on the application year produce almost identical results.

11I restricted the calculation to patent couples with a maximum citation lag of ten years, as longer lags are
unlikely to be related to knowledge spillovers. The citation lag is calculated as the di�erence between the grant
year of the citing and cited patents.
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conducted by the Census Bureau and National Science Foundation (Kerr and Fu, 2008).

3.1 Why should TIC patents a�ect the number of patents produced by other

local inventors?

An increase in the number of TIC patents, due to an increase in the productivity or in the number

of TIC inventors, may have both positive and negative e�ects on the number of other patents in

the same city. Positive e�ects can be derived from theories of agglomeration externalities in cities;

negative e�ects originate from a general equilibrium approach to local labour markets (Moretti,

2011). This section describes some mechanisms that could be in place. In the empirical analysis,

I estimate a reduced-form model, taking into account only the aggregate net e�ects of all those

mechanisms. Exploring the e�ect of individual channels would be much more demanding - also

in terms of data - and it is above the scope of the present paper. The empirical challenge of

disentangling the di�erent - but observationally equivalent - sources of agglomeration economies

is well known in urban economics under the name of "Marshallian equivalence".

It is also worth noticing that some of the mechanisms described below may, in theory, work

also in the opposite direction (from non-TICs local patents to TICs); to easy the exposition

this is not explicitly addressed in the discussion below, however the empirical methodology is

designed to be robust to reverse causality.

3.1.1 Positive e�ects

According to the insightful taxonomy introduced by Duranton and Puga (2004), positive e�ects

may occur through learning, sharing, or matching mechanisms.

Learning generally involves interactions with others and many of these interactions have

a face-to-face nature. Cities are therefore a fertile environment for learning: the idea that

cities foster the di�usion of knowledge goes back to Marshall (1890) and it is the backbone of

endogenous growth theory (Lucas, 1988). However, there is still limited evidence on the channels

through which knowledge spillovers take place (Feldman and Avnimelech, 2011). In the speci�c

context of patenting in cities, it is possible to think about at least �ve di�erent mechanisms:

a) Informal (or tacit) knowledge spillovers: TIC inventors and non-TIC inventors develop

informal (personal) contacts due to residential proximity or other kind of face-to-face interactions.

Thanks to frequent direct contacts with the TICs inventor, the local non-TIC inventor absorbs

ideas for her projects. This channel is nick-named as "ideas over beers" by GHM and is more

formally de�ned as �di�usion of information� or �social learning� by Duranton and Puga (2004).

b) Formal knowledge spillovers: TIC inventors transfer their expertise to non-TIC inventors

8



in more formal ways, e.g. during seminars or conferences.

c) Workplace contacts: (future) local non-TIC inventors may have the opportunity to work

in a TIC, without necessarily being inventors themselves (they may be employed in di�erent

duties, or they may leave the institution at an early stage of their career).

d) Workplace mobility and spin-o�: active TIC inventors leave their company to start their

own business, or they are hired by a local non-TIC. As correctly pointed out by Breschi and

Lissoni (2009) and Almeida and Kogut (1999), the previous work experience may be fully priced

into the inventor's wage, in which case the spillover is not an externality.

e) Display/attraction e�ects: the presence of many labs of TICs may attract other inventors

to the same city, as they may expect to enjoy the e�ects of points a, b, and c. This is therefore

an indirect form of positive knowledge spillover.

All the �ve mechanisms may require some time to become e�ective, thus they may be found

in the data with a time lag.

The sharing of public or private goods is also a source of agglomeration economies. To the

extent that an increase in the activity of TICs in a city generates or attract the provision of

expensive, indivisible goods which are not found in cities where TICs are less active and that

also non-TIC inventors bene�t of, sharing can also explain a positive e�ect of an increase of

TIC patents on non-TIC patents. An example of sharing could be a display e�ect similar to

that presented above as an indirect knowledge spillover: TICs may contribute to make a city

a notorious innovative hotspot, which in turn may attract non-TICs. For instance, for a start-

up the location in an innovative city may be a positive signal to potential investors. Such �city

identity asset� can be considered as a shared public good. Other more common examples of shared

goods originating from the location of TICs and bene�ting also non-TIC could be specialized

universities, testing facilities and laboratories, or specialized patent attorneys or intermediares.

Finally, positive e�ects may also arise from better matching of �rms and employees. An

increase in the number of TICs leads to higher concentration of scientists and employers and

therefore generates a thicker labour market for inventors, with a more e�cient skill matching.

This in turn raises inventors' expected wage and reduces their unemployment risks, eventually

attracting more non-TICs to the city, and helping local �rms innovate and patent more.

It is worth noticing, however, that both sharing and matching mechanisms can be generally

categorized into the group of location (or specialization) economies, i.e., the positive externalities

originating from the local proximity of activities in the same industry or sector; while learning

mechanisms are usually classi�ed into the group of Jacobian externalities or economies of di-

versity, i.e., positive externalities arising from the interaction with a wide spectrum of di�erent

9



economic activities, in line with the theory of "cross-fertilization of ideas" developed by Jacobs

(1969), later formalized and empirically validated by Glaeser et al. (1992). The speci�c context

under scrutiny in this paper is not an exception. In particular, sharing and matching mecha-

nisms should be stronger within technological categories, rather than between. For matching

mechanisms, this should be true almost by de�nition. For the sharing channels, it reasonable to

assume that the kind of goods or facilities that inventors share, e.g. laboratories or equipment,

are sector-speci�c. Therefore, evidence that the positive e�ect is stronger across technologies,

rather than within, would be suggestive that Jacob-type knowledge spillovers tend to dominate

over sharing and matching mechanisms.

3.1.2 Negative e�ects

Potential negative e�ects may be derived in a general equilibrium approach to local labour

markets (Moretti, 2011), and they may mainly occur through an increase in nominal wages.

Indeed, a raise in innovation activity in a local TIC plant corresponds to an upward shift in the

demand for local scientists, which in turn raises local nominal wages in the sector, at least in the

short run (in the longer run, workers may migrate in from other cities, but the in�ow is limited

by the local supply of housing which a�ects real wages). Both mechanisms a�ect negatively the

number of non-TIC patents, since local scientists become more costly, without a corresponding

increase in productivity (assuming zero positive e�ects). The actual impact of these e�ects

depends on the skill substitutability among TICs and other inventors, and on the elasticity of

supply of labour (also through migration). Higher the skill substitutability, larger would be the

increase in local nominal wages; a more elastic supply of labour, instead, would compress the

wage growth. Since labour supply is likely to be rigid in the short run, the negative e�ects are

expected to be stronger in the short term, and then to fade over time. Also, negative e�ects are

expected to be stronger within narrowly-de�ned technological sectors, since skill substitutability

of workers is higher, and correspondingly the wage e�ect is larger.

4 Analysis

This section investigates whether the production of TIC patents in a city a�ects the production

of non-TIC patents in the same city and period, and quanti�es this e�ect. The model also

includes a one period lag in the spillover e�ects of TICs. The following panel with �xed e�ects
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is estimated:

NonTICsikt = β1 · TICsikt + β2 · TICsikt−1 + θ1 ·
∑
q 6=k

TICsiqt +

+ θ2 ·
∑
q 6=k

TICsiqt−1 + γ1 · Totempikt + γ2 ·HH i
t + φiδk + δkτt + εikt (1)

where i, k, and t index MSAs, categories, and time periods, respectively; TICs and nonTICs

are the number of patents in the respective groups, Totemp and HH are additional time-variant

controls, and δ, τ, φ are category, time, and MSA �xed e�ects.12 The analysis is limited to

periods 3-4-5, as MSA controls are not available for previous periods. All variables are expressed

in logarithmic form.

The model is estimated at three alternative levels of technological classi�cation, and consequently

the index k refers to the three di�erent technological classi�cation levels the data are aggregated

at: the MSA level (i.e., no sectoral decomposition, k is constant); the �ve technological cat-

egories level; and the 27 subcategories level. The category and sub-category classi�cation is

described in Hall et al., 2001. The �ve technological categories are the following: Chemical (ex-

cluding Drugs); Computers and Communications (C&C); Drugs and Medical (D&M); Electrical

and Electronics (E&E); Mechanical; the residual category �Other" is excluded from the sample.

The 27 subcategories are more detailed classi�cations nested inside the �ve categories, e.g., the

category Computers and Communications is further classi�ed into the following subcategories:

Communications; Computer Hardware & Software; Computer Peripherals; Information Storage.

In addition, the model is also estimated on aggregated data at the MSA level. The three dif-

ferent level of technological aggregation (MSA, category, and sub-category) may give interesting

insights on the technological boundaries of knowledge spillovers.

In order to check the consistency of the results across di�erent speci�cations, regressions

are based on �ve di�erent estimations of model 1. The �rst is an OLS estimation including

all the controls. Regressions two to �ve are estimated with 2-stages least squares (2SLS): the

second and the third include the contemporaneous and lagged TIC patents variable, respectively,

excluding all other continuous controls and including all �xed e�ects; the fourth includes both the

contemporaneous and lagged TICs patent variable jointly; �nally, the �fth estimation also add

all the controls. Details on the instrumental variable strategy are reported in the next section.

I total, therefore, I present results from �ve di�erent estimations at three di�erent aggregation

levels.

12The sixth technological category, called "other", is a residual classi�cation and is excluded. This does not
a�ect the coe�cients but increase precision of the estimates.
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The �rst control variable included in the �rst and �fth estimations is the total number of TIC

patents in technological categories di�erent from i. It is worth noting that this variable might

be endogenous: non-TIC inventors might produce knowledge spillovers bene�ting TICs in the

other technological categories. However, the inclusion of this variable has a limited e�ect on the

main coe�cients, especially with the 2SLS estimator. As the latter is robust to omitted variables

bias, the estimate of the coe�cient for the variable of interest (the number of TIC patents) is

consistent even excluding the (endogenous) control.13

The other two control variables included are total employment at MSA, category or sub-

category level (Totemp), depending on the speci�cation, to control for time-variant agglomera-

tion economies and size e�ects;14 and the Her�ndahl�Hirschman index of technological diversity

(HH ), calculated as the sum of the square of the shares of 4-digit International Patent Classi�-

cation (IPC) classes by MSA and time period:

HHit =
∑
j

(share2jit) (2)

where i indexes MSAs, j IPC classes, and t time periods.

Finally, as mentioned above, all regressions include a wide set of �xed e�ects. When data

are aggregated at MSA level, all regressions includes a MSA �xed e�ect, as well as period �xed

e�ects. When regressions are aggregated at MSA and (sub)category level, all regressions include

a (sub)category-MSA �xed e�ects, and (sub)category-period �xed e�ects.

4.1 The choice of the MSA as areal unit

Ideally, the spatial unit at which individual observations are aggregated should match the spatial

decay of both knowledge spillovers and labour market clearing forces. Since both boundaries are

inde�nable entities, the spatial de�nition inevitably entails a substantial degree of approximation;

furthermore, data limitation are particularly stringent at a detailed geographical level. With

respect to labour market analysis, the choice of commuting-de�ned areas, like the MSAs in

US, is now widely considered to be a viable option.15 The de�nition of the spatial decay of

knowledge spillovers is more debated: while several studies have adopted spatial areas as large as

US States (e.g. Ja�e, 1989; Peri, 2005), available evidence suggests that the e�ect of knowledge

13Attempts to instrument the variable with the sum of the instrument in the other categories provide similar
results, but estimates were less precise, due to the large number of endogenous variables and instruments.

14The employment variable is sourced from the County Business Patterns (CBP) database maintained by the US
Census Bureau. In order to obtain aggregates at technological category and sub-category level, the SIC industry
classi�cation is converted into the US patent classi�cation (USPC) using the concordance table provided by the
USTPO; the USPC classi�cation is then converted into the NBER technological class and subclass de�nition
adopted in this paper.

15See Menon (2012) for a discussion of the statistical properties of MSAs.
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spillovers may be stronger within cities, rather than between (Jofre-Monseny et al., 2011), or even

rapidly fade out within less than a miles (Arzaghi and Henderson, 2008). It is worth stressing,

however, that the �ndings from the latter study are speci�c to a single and peculiar industry

(advertising), and the authors carefully acknowledge that the mechanisms that they isolate are

�proximity bene�ts for information exchange and networking" (p. 1012), i.e., a speci�c kind of

proximity bene�ts (those listed at point a in section 3.2.1). Using patent data to explore very

localized informal knowledge spillovers looks promising, however it also faces important data

limitations: only a very small fraction of patent data reports detailed information on inventors'

address which would allow to explore knowledge spillovers at a �ne spatial scale. An intermediate

alternative could be using postcode information to allocate patents to US postcode area, but

again the coverage is critically limited - and potentially selected - as in the patent sample used

in this paper only 15% of patents report the postcode. Furthermore, US postcode areas are

extremely heterogeneous in size and population, and their borders do not have any political

nor economic signi�cance, which implies that a postcode-level analysis could be seriously �awed

by a Modi�able Areal Unit Problem (MAUP) bias.16 Furthermore, they would jeopardize the

estimation of labour market e�ects, as they are generally much smaller than local labour market

areas.

Therefore, since the reduced-form e�ect that I estimate is supposedly a mix of labour market

and knowledge spillovers mechanisms - which de�nition in this case is broader than bene�ts for

information exchange and networking - the Metropolitan Statistical Area is the most sensible

spatial unit of analysis, among the limited number of available options. However, the e�ect of

short-decay knowledge spillovers may be underestimated. It is therefore appropriate to specify

that the analysis takes into account only MSA-level knowledge spillovers, which may not fully

re�ect other short-decay spillovers.

4.2 The instrumental variable for the number of TIC patents

Estimates of equation 1 can be inconsistent due to reverse causality or omitted variable biases,

especially for the main variable of interest (the number of TIC patents). For instance, non-TIC

inventors may a�ect the productivity of TICs, and a dynamic university (or public subsidies)

may attract a large number of TICs and non-TIC inventors to the same city. I therefore create

an instrumental variable for the number of TIC patents in order to allow a causal interpretation

of the results.

The intuition for the instrument builds on the fact that most TICs are located in several MSAs

16See Openshaw (1983) for an introduction to the MAUP.
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and in di�erent US states. Table 6 lists the top 25 assignees in the period under examination

(1980-1999), reporting the number of di�erent MSAs and states where at least 100 patents are

authored, and the highest share of patents authored in an individual MSA: only one company is

located in one MSA (Ford Motor), while all the remaining assignees are located in several di�erent

cities and states. Smaller TICs show a similar pattern. Therefore, an exogenous variation in the

productivity of TIC inventors in a given MSA and period may arise from the interaction of two

factors: i) an historical presence of inventors working for a given company in that MSA, and ii)

a US-wide increase in the productivity or the market share of this company in the given period.

To the extent that the �rst factor is path-dependent and exhibits some inertia over time, it is

exogenous to contemporaneous MSA-speci�c factors, conditional on MSA �xed e�ects. At the

same time, the productivity of TIC inventors working for the same companies in di�erent cities is

likely to be correlated, due to the sharing of similar strategies and resources, competition pressure,

market demand, etc. Therefore, a US-wide productivity shift in a given company translates into

MSA-speci�c productivity shocks in proportion to the number of inventors working for that

company in the given MSA.

The IV strategy is close in spirit to the approach of Bartik (1991) and Blanchard and Katz

(1992), among others, who instrument regional economic growth interacting the lagged sectoral

structure of a region with the contemporaneous national sectoral trend. In the next section the

construction of the instruments is explained in detail.

4.2.1 Instrumental variable construction

The instrumental variable is calculated as follows:

a) For the period 0, each MSA, and each TIC, I calculate the share of active inventors

over all TIC inventors in the given MSA. In the case of TIC inventors with multiple MSAs or

assignees in the same period, the modal one is chosen.

b) For each period, each TIC, and each MSA, I calculate the average number of patents

produced in the whole US, excluding the patents authored by inventors located in the given

MSA.

c) For each MSA, period, and assignee, I multiply the share of inventors in the period 0

calculated at point a by the average number of patents produced by TIC inventors sharing the

same assignee in period t calculated in b. Subsequently, I sum the outcome by MSA, period, and

technological category (if an inventor has patented in di�erent categories in the same period, the

modal one is chosen). The result is the instrumental variable for total number of TIC patents in

period t, by MSA and category.

14



Formally, it can be summarized by the following equation:

IVikt = Σa(TIC Invika0 ·AvPatiat)/Patik0 (3)

where i indexes MSAs, t periods, k technological categories, and a the assignees. In the few

cases in which the value of point b is missing (because there are not other TIC inventors with

the same assignee in other MSAs), it is replaced with the contemporaneous US-wide average

productivity of TIC inventors in the same technological category.

4.2.2 Instrument's validity and falsi�cation tests

The validity of the IV relies on an exclusion restriction related to point a, i.e., once MSA �xed

e�ects are controlled for, the number of TIC inventors working for a given assignee in the �rst

period has no independent e�ect on the number of non-TIC patents developed in period n in

the same MSA/category; and on an assumption of exogeneity related to point b, i.e., given that

TICs and other inventors have di�erent assignees, it is assumed that the average productivity of

an assignee in the whole US (calculated excluding the given MSA) has no independent e�ect on

the productivity of non-TIC inventors of that MSA.

A concern related to point b is that the address of residence of a few inventors does not truly

re�ect the location of their workplace while working on the patent; this can be due to errors

in the data or geocoding process, in the city name spelling, or to a subsequent change in the

inventor's address. This would threaten the exogeneity of the IV, as the productivity of those

inventors might not be exogenous to local unobservables, especially in the case in which their real

MSA and the MSA the instrument is built for coincide. Therefore, to be on the safe side, when

creating the IV all the company-MSA pairs with less than 100 patents are dropped; i.e., patents

assigned to MSAs which are unlikely to host a R&D lab, and which may misreport the real

inventor's location, are excluded. This should reduce the �noise� in the geographical assignment

of the R&D labs of TICs, minimizing the risk of endogeneity of the IV.

A second concern relates to the plausibility of the exclusion restrictions for assignees' shares

in period 0. The historical presence of one or more TICs in a MSA might depend on a persistent

trend over time, which in turn might also correlate with non-TIC patents in the following periods.

For instance, an dynamic university created in the early '70s may have attracted a productive TIC

to a city; over the '90s the same expanding university may a�ect positively both the number of

TIC and non-TIC patents in that city, challenging the exclusion restrictions on the instrumental

variable.

I design a falsi�cation test to address this and related concerns. The test is based on creating a
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�placebo IV� which is calculated following formula 3, but inventors' shares at time 0 are multiplied

by the average productivity at time t of a randomly picked TIC within the same MSA and period,

rather than to the correct one. Therefore, the placebo instrument absorbs only the (supposedly)

time invariant component of the correlation with the correspondent number of TIC patents in

the same MSA and category. If period zero shares were endogenous due to an unobserved MSA-

speci�c persistent trend which correlates with both the number of TIC and non-TIC inventors,

the placebo IV would correlate with the number of TIC patents; if the correlation were strong

enough, the placebo IV would be signi�cant in the �rst stage regression. The table added to the

paper shows that this is never the case: all the coe�cients are very far from being statistically

di�erent from zero (table 9).

5 Results

The regression results are reported in table 5-6-7.17 As noted in the previous section, the es-

timations are based on �ve di�erent speci�cations - OLS with controls (col. 1), 2SLS with

contemporaneous TIC patents only (col. 2), 2SLS with lagged TIC patents only (col. 3), 2SLS

with both contemporaneous and lagged TIC patents (col. 4), and 2SLS with all the variables (col.

5) - at three aggregation levels: MSAs (table 5), MSAs and �ve technological categories (table

6), and the MSAs and 27 technological subcategories (table 7). All columns with IV estimation

also report the Angrist and Pischke (2009, pp. 217-18) �rst-stage F statistics for tests of weak

identi�cation when there is more than one endogenous regressor (AP). When just one variable is

considered to be endogenous, the test is equivalent to the traditional �rst stage F-statistic.18 In

most cases, results from �rst-stage regressions con�rm that the instrument is strong, especially

at category and subcategory level.

Overall, the results suggest that there is a positive e�ect of TIC patents on non-TIC patents

at MSA level. The e�ect is stronger with a one-period time lag, and it is not con�ned within

technological categories. Within technological sub-cateogories, the estimations fail to �nd any

17Standard errors are clustered at MSA level. Alternative estimates based on clustering at the state-year
pairwise combination give almost identical standard errors. Since the distribution of total patents across MSAs
shows a large variance, all regressions are (analytically) weighted by the total number of patents over the period
of analysis (see Angrist and Pischke, 2008, for a detailed discussion on the suitability of weighted regressions
when the sample is composed by grouped individual observations). I also dropped all the MSA-Category pairs
with less then 10 patents over the whole period of analysis. Unweighted regression results and full sample results
are qualitatively similar but less precise. Logarithmic transformation is applied to the patent count augmented
by one unity, in order to keep observations with zero patents in the sample. Robustness tests including a zero
TIC patent dummy or limited to the subsample with strictly positive patents suggest that the procedure does not
introduce any signi�cant bias.

18The Angrist-Pischke (AP) �rst-stage F statistic is calculated for each individual endogenous regressors by
"partialling-out" linear projections of the other endogenous regressors. The AP test will fail to reject if a particular
endogenous regressor is unidenti�ed. Values of the AP �rst-stage F can be compared to the Stock-Yogo (2002,
2005) critical values for the Cragg-Donald F statistic with K1=1.
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signi�cant positive e�ects, once endogeneity is dealt with. This implies that across technologies

and with a time lag, positive agglomeration e�ects prevail; within narrowly de�ned technologies

and the same time period, negative wage e�ects fully counterbalance the positive ones. This

may happen because negative e�ects are stronger within sub-categories, and/or because positive

e�ects are weaker. Both the justi�cations are consistent with the theoretical predictions. On

the one hand, wage e�ects, which push the coe�cient downward, are stronger within narrow

technological categories due to higher skill substitutability - and in the short run, before work-

ers' relocation takes place. On the other hand, the positive agglomeration e�ects arising from

learning mechanims take a few years before being e�ective, and are technologically complemen-

tary. Without knowing the exact magnitude of the two e�ects, it is hard to say which of the

two factors contributes most to explaining the absence of positive e�ects at sub-category level.

However, the results are at least suggestive that most of the positive e�ects arise from Jacob-

type, cross-technology knowledge spillovers, rather than from other sector-speci�c externalities,

like sharing or matching mechanisms. In the following, I will present an additional test based on

citation data which further substantiate this interpretation of the results.

The results at MSA level are reported in table 5. The �rst column report the results of the

OLS estimation: both the contemporaneous and the lagged level of TIC patents are signi�cant,

and both the coe�cients are equal to 0.09. Column 2 to 5 report di�erent speci�cations using

the instrumental variable approach. When included alone, the contemporaneous and the lagged

number of TIC patents are both signi�cant, with a coe�cient of 0.15 and 0.22, respectively.

Once the two TIC variables are jointly included in the same speci�cation, only the lagged one

is signi�cant, with a value ranging from 0.20 to 0.22, depending on whether the other controls

are included or not. Given that the speci�cations are log-linear, coe�cients can approximately

be interpreted as elasticities: a 10% increase in the number of TIC patents in a given city

corresponds to around a 2% increase in the number of non-TIC patents, ceteris paribus.

When the sample is disaggregated to technological categories (table 6), the results are qualita-

tively similar to those obtained at MSA level, but the coe�cients' magnitude is slightly reduced,

and their signi�cance is weaker. The contemporaneous coe�cient is now never signi�cant across

the �ve speci�cations. The lagged coe�cient, instead, is signi�cant and equal to 0.06 in the OLS

regression (col. 1), while ranges from 0.15 to 0.23 in the IV regression, but loosing progressively

signi�cance once further controls are introduced.

When the sample is further disaggregated to 27 technological subcategories (table 7), the

contemporaneous TIC coe�cient is never signi�cant, and the lagged one is signi�cant only in the

OLS regressions (col 1). Across all IV speci�cations (col. 2-5), the contemporaneous coe�cient
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turns even negative, and the lagged one is very close to zero. Therefore, as anticipated, at the

sub-category level the regression analysis fails to �nd any causal e�ect of TIC patents on non-TIC

patents.

Why MSA- and category-level OLS estimates are downward biased? There are at least

three plausible explanations for that: negative selection, measurement error, and local average

treatment e�ect (LATE). Negative selection may arise because, in general, those TIC inventors

that are more "exposed" to non-TIC inventors might produce less knowledge spillovers than the

average TICs inventor. In other words, TIC inventors localized in "non-TICs cities" may be less

productive than TIC inventors localized in "TICs cities". As this lower quality is unobserved,

it introduces a (downward) bias in the OLS estimates. Another plausible explanation for the

downward bias could be a measurement error in the TICs variable: the intensity of activity of TIC

inventors in a locality is approximated by the number of patents they produce, but the measure

is clearly noisy, as patents are heterogeneous in quality. To the extent that the measurement

error of the instrumental variable is independent from the one in the endogenous variable, IV

estimates may eliminate the "attenuation bias" of the OLS coe�cient. The independence of the

two errors is plausible as the variables are measured using patents in di�erent localities (in the

speci�c city and in the whole US excluding that city, respectively). Finally, to the extent that

the elasticity of the endogenous regressor with respect to changes in the instrumental variables

is not constant across groups, 2SLS estimates may correspond to a local treatment e�ect, rather

than to an average treatment e�ect (ATE) (Imbens and Angrist, 1994). In this speci�c context,

it is likely that the elasticity of the endogenous variable to the instrument is higher for incumbent

plants, since one of the component of the instrument is the historical presence of TIC inventors in

the MSA. Incumbent plant inventors may have a stronger e�ect, since they are more connected

with local other non-TIC inventors; this may explain an higher local treatment e�ect.

5.1 Testing for the knowledge spillover channel

As discussed in section 3.2, positive e�ects of TIC on non-TIC patents may occur through

learning, sharing, and matching mechanisms. I have argued that the results suggest that the

learning channels tend to prevail over sharing and matching mechanisms. In what follows I

present additional evidence supporting this view.

Citations are often used in patent analysis as a way to �trace� knowledge spillovers (at least

since Ja�e et al., 2003). Therefore, is it plausible to assume that most of locally cited patents

are among those that generate knowledge spillovers to non-TIC patents, although the full group

of patents generating spillovers might be much larger, as not every knowledge spillover results
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in a citation. However, if regressions based on such a tiny share of patents still pointed to the

existence of positive e�ects of TIC patents on non-TIC patents, this would further support the

view that knowledge spillovers play an important role in explaining the positive e�ect of TIC

patents over non-TIC patents. The Table 8 reports MSA-level regressions in which the number of

TIC patents have been restricted to those patents that are cited by non-TIC patents in the same

MSA. Those patents represent only a tiny minority - only 5% on average - of all TIC patents

produced in a given MSA. In all other respects, the estimations are identical to those reported

in 5.

The results reported in table 8 indeed support the relevance of learning mechanisms, as OLS

coe�cients are quite similar to those presented in the baseline regressions (col 1). The results can

however simply be similar because the two group of TIC patents - those cited by local non-TIC

and the others - might be strongly correlated. Cols. 2 and 3 therefore also include the number

of other TIC patents on the right hand side of the regression. As it is possible to see, while some

of the contemporaneous e�ect is clearly due to the correlation of the two variables, the lagged

e�ect is almost entirely attributable to the TIC patents cited locally. This result is in line with

previous �ndings, and are a further evidence that knowledge spillovers need a few years before

materializing. IV results are also in line with those discussed above, although coe�cients loose

some signi�cance, probably because of a much weaker �rst stage, as highlighted by the lower

AP statistics. All in all, the test is thus supportive of the prominent role played by knowledge

spillovers in explaining the positive e�ect of TIC patents on non-TIC patents at MSA level.

5.2 Robustness

The core results are subject to a variety of robustness tests - regarding the econometric speci-

�cation, the TIC de�nition, the geographic assignment of patents, etc. which leave the main

conclusions una�ected.

A �rst robustness test consists in adding a lagged dependent variable to the right hand side of

the regression equation, as its omission might lead to un omitted variable bias in the estimation

of the coe�cient on the lagged TIC patent variable, and this might explain why the latter tends

to be larger than the contemporaneous one. The model is estimated with a GMM Arellano-Bond

dynamic panel; the lagged levels (at t-2 and t-3 ) of the dependent variable are set as instruments

for the lagged dependent variables in the �rst-di�erences equation, while the endogenous TIC

patents variables are instrumented with the exogenous IV. The results, available upon request,

show that the lagged non-TIC variable is positive and signi�cant at MSA level, however all other

coe�cients are aligned with the �ndings of the 2SLS regressions.
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A further robustness test challenges the choice of limiting the de�nition of TICs to the top

50 companies within a given technological category. I therefore replicate the analysis using a

relative cut-o�, set at the 5� (per mil) level; in such a way, the TIC de�nition involves a number

of companies which is only slightly larger than the top 50 threshold. The results (available upon

request), are very similar to those obtained from the main speci�cations. I also replicated the

analysis using two di�erent ranking thresholds, equal to 25 and 75, respectively. Although

estimates are less precise in a few cases, the values of the main coe�cients are again close to

those presented above, and my general conclusions are una�ected by the change in the threshold.

Finally, I repeat the empirical analysis de�ning as TICs those companies cumulatively owning

50% of patents in the category: this also does not a�ect the main conclusions of the paper (the

results of these two last tests are available upon request).

Another potential source of concern may be the choice of considering only the �rst author of

the patent in the geolocalization process.19 This is based on the assumption that the �rst author

is the leading scientist, but it would introduce a bias if authors are listed in alphabetical order.

Therefore I check whether authors whose surname begins with one of the �rst letters of the

alphabet are more likely to be reported as �rst authors, compared with second or third authors,

�nding that di�erences in probability are very low and fade out after the �rst �ve-six letters

(table available upon request). This evidence therefore suggests that the �rst author should be

the project leader. However, to be on the safe side, I also replicate all the estimations limiting

the sample only to single-authored patents (54% of the sample), or using the city of the second

inventor for the geographical assignment of patents. In both cases, the results (available upon

request) are similar to the baseline estimates.

The choice of patent count as a measure of productivity of TIC inventors may also be ques-

tioned, since patents are very heterogeneous in quality and value. As a consequence, patent

counts can be a very noisy proxy. Although I exclude from the TICs group all patents which do

not receive any citations, this might not be enough. If the patent value heterogeneity behaves as

a classic measurement error and if the measurement error in the instrumental variable is indepen-

dent from those in the endogenous variable, the 2SLS results are still consistent. However, given

that both the endogenous and IV variables are based on information from the same companies,

the assumption of the independence of the measurement error may not hold. Another possible

solution is weighting TIC patents by the number of forward citations, since the latter has been

shown to be a reasonably good proxy for patent value (Hall et al., 2005). I thus replicate the

analysis using the quality-corrected measure of TIC patents. The results (available upon request)

19In the patent literature, using only the �rst author is probably the most common option, although some
researchers also use fractional count or multiple allocation.
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con�rm that the coe�cient values are reassuringly close to those of the main speci�cations.

6 Conclusions

This paper assesses whether the number of patents developed by inventors working for the top

inventive companies (TICs) has any causal e�ect on the number of patents granted to other

inventors located in the same MSA. TICs are de�ned as those companies which are ranked

among the top 50 in the number of owned patents within their technological category. Causality

is inferred through instrumental variable estimation.

Economic theory predicts that an increase in innovation activity of TICs a�ects the pro-

duction of non-TIC patents positively through knowledge spillovers and other agglomeration

externalities, and negatively through increased local wages. The empirical �ndings are coherent

with the theoretical framework: results show that positive e�ects prevail; they are stronger with

a time lag and are not necessarily bounded within sectors, providing support for the relevance of

economies of diversity. A 10% increase in the number of TIC patents leads to an increase of about

2% in the number of non-TIC patents in the same MSA over the following 4-8 years. Within

narrowly de�ned technological categories, however, the positive e�ects completely disappear; this

may happen partly because negative e�ects are expected to be stronger within sectors, and partly

because positive knowledge spillovers are expected to be stronger across sectors. Results survive

to a number of potentially demanding robustness tests. Taken together, and including also an

additional test based on citation data, the results suggests that Jacob-type knowledge spillovers,

which are not con�ned within technological categories, tend to prevail over other sector-speci�c

source of agglomeration economies, including sharing and matching mechanisms. These �ndings

are in line with a substantial stream of research proving the economic relevance of localized

knowledge spillovers.

As Duranton and Puga (2004) forcefully argue, most of the urban agglomeration mechanisms

arise from the interactions of heterogeneous agents; empirically, it is important to understand

which level of heterogeneity really matters. This paper provides some evidence on that, by

showing that technological and temporal heterogeneity is needed for the interaction of TIC

companies with other inventing �rms to produce positive e�ects.

The �ndings also bring in relevant implications for local development policies. As discussed by

GHM, policy makers are increasingly keen in subsidizing the local investments of large companies,

with the idea that these may generate agglomeration spillovers and bene�t local �rms. Do this

paper's �ndings provide ground to these policies? Given the positive e�ect of TIC patents on the

number of other local patents, the attraction of TICs to a city may have a positive e�ect on the
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local economic environment: in the medium run, TICs positively a�ect local patenting activity,

which in turn might foster the birth of new plants, the innovation output of local businesses,

and the generation of new employment. Thus, even though R&D labs of big corporations may

have only a limited direct e�ect on the local economy, as most the of the employment and value

added is located elsewhere, they might still be bene�cial through a number of indirect channels.

However, the attraction of TICs may impact sectors and time periods which are not those directly

a�ected by the policy intervention, making di�cult for policy makers to target speci�c sectors

and to grasp the bene�ts in the short term.
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Table 1: Summary statistics of TIC and non-TIC patents and companies
Statistics TIC Non-TIC

No. of inventors 68,258 270,903

No. of companies 164 54,284

Total no. of patents 209,198 483,551

Average patents per company 1275.59 8.90

Median patents per company 740 1

Average citations per patent 5.11 3.74

Median citations per patent 2 1
Note: the table reports descriptive statistics comparing Top Inventing Companies (TICs) with other companies

(non-TICs), as well as the patents assigned to the two categories of companies. The statistics are limited to periods

3, 4 and 5, i.e., to the 1988-1999 interval. See paragraph 3 for the de�nition of TIC and non-TIC companies.

Table 2: The top 10 inventing companies (TIC) by technological category

Note: the table ranks the companies according to the total number of assigned granted patents in each techno-
logical category by the USTPO, over the period 1975-1999. Patents authored by non-US inventors are excluded.

Source: author's elaboration on NBER Patent database.
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Table 3: The top 10 MSAs in the number of TIC and non-TIC patents

Note: the table ranks tMetropolitan Statistical Areas (MSAs) according to the total number of patents assigned

to Top-Inventing Companies (TICs) and to other companies (non-TIC) , respectively, over the period 1988-1999.

See paragraph 3 for the de�nition of TIC and non-TIC companies.

Table 4: The location of top inventing companies

Note: the �rst column reports the number of patents owned by the company, the second (third) column report

the number of di�erent MSAs (US States) in which at least 100 patents have been authored by local inventors,

and the fourth column reports the share of patents authored in the MSA with the largest number of authored

patents.
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Table 5: The e�ect of TIC patents on other patents, level of aggregation: MSA
(1) (2) (3) (4) (5)

Dep. var. Non-TIC patents

Method OLS IV - 2SLS

TICs pats. (t) 0.090** 0.157* 0.016 -0.019

(0.045) (0.087) (0.119) (0.125)

TICs pats. (t-1) 0.090*** 0.228*** 0.220** 0.199**

(0.020) (0.066) (0.101) (0.100)

Total MSA empl. 0.196 0.185

(0.122) (0.141)

HH index 0.162*** 0.204***

(0.036) (0.073)

FIRST STAGE REGRESSION

AP TICs pats. (t) 13.99 7.692 7.158

AP TICs pats. (t-1) 15.27 11.40 10.11

Period f.e. YES YES YES YES YES

MSA f.e. YES YES YES YES YES

Observations 840 840 840 840 840
Note: robust standard errors, clustered at MSA level, in parentheses. The dependent variable is the number of

non-TIC patents. The unit of observation is the MSA-period. The time interval is 1988-1999, divided in three

times period of four years each. The endogenous variable are TICs pats. (t) and TICs pats. (t-1). The excluded

instruments are IV (t) (col. 2); IV(t-1) (cols. 3); IV(t) and IV(t-1) (col. 4-5). All variables are expressed in

logarithmic form. All regressions are (analytically) weighted by the total number of patents over the period of

analysis. The �rst-stage pane reports the Angrist and Pischke (2009) �rst-stage F statistics for tests of weak

identi�cation. *** p<0.01, ** p<0.05, * p<0.1
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Table 6: The e�ect of TIC patents on other patents, level of aggregation: MSA-Category
(1) (2) (3) (4) (5)

Dep. var. Non-TIC patents

Method OLS IV - 2SLS

TICs pats. (t) -0.017 0.124 -0.048 -0.096

(0.025) (0.151) (0.168) (0.186)

TICs pats. (t-1) 0.062*** 0.223** 0.234* 0.149

(0.022) (0.101) (0.122) (0.110)

TICs other cats. (t) 0.076** 0.097*

(0.036) (0.058)

TICs other cats.(t-1) 0.053** 0.024

(0.023) (0.045)

Total empl. 0.586*** 0.600***

(0.154) (0.178)

HH index 0.144*** 0.152***

(0.053) (0.051)

FIRST STAGE REGRESSION

AP TICs pats. (t) 20.98 11.28 10.82
AP TICs pats. (t-1) 17.84 20.72 14.86

MSA*cat f.e. YES YES YES YES YES

Cat.*Period f.e. YES YES YES YES YES

Observations 3,521 3,521 3,521 3,521 3,521
Note: robust standard errors, clustered at MSA level, in parentheses. The dependent variable is the number of

non-TIC patents. The unit of observation is the MSA-category-period combination. The time interval is 1988-

1999, divided in three times period of four years each. The endogenous variable are TICs pats. (t) and TICs pats.

(t-1). The excluded instruments are IV (t) (col. 2); IV(t-1) (cols. 3); IV(t) and IV(t-1) (col. 4-5). All variables

are expressed in logarithmic form. All regressions are (analytically) weighted by the total number of patents over

the period of analysis. The �rst-stage pane reports the Angrist and Pischke (2009) �rst-stage F statistics for tests

of weak identi�cation. *** p<0.01, ** p<0.05, * p<0.1
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Table 7: The e�ect of TIC patents on other patents, level of aggregation: MSA-Subcategory
(1) (2) (3) (4) (5)

Dep. var. Non-TIC patents

Method OLS IV - 2SLS

TICs pats. (t) -0.011 -0.088 -0.162 -0.297

(0.018) (0.180) (0.220) (0.305)

TICs pats. (t-1) 0.041*** 0.047 0.091 0.059

(0.011) (0.119) (0.151) (0.181)

TICs other cats. (t) 0.061** 0.135*

(0.029) (0.074)

TICs other cats.(t-1) 0.049** 0.064

(0.020) (0.051)

Total empl. 0.754*** 0.898***

(0.253) (0.303)

HH index 0.089* 0.117*

(0.050) (0.062)

FIRST STAGE REGRESSION

AP TICs pats. (t) 13.93 8.128 5.567
AP TICs pats. (t-1) 19.01 11.75 14.10

MSA*subcat f.e. YES YES YES YES YES

Subcat.*Period f.e. YES YES YES YES YES

Observations 15,023 15,023 15,023 15,023 15,023
Note: robust standard errors, clustered at MSA level, in parentheses. The dependent variable is the number

of non-TIC patents. The unit of observation is the MSA-subcategory-period combination. The time interval is

1988-1999, divided in three times period of four years each. The endogenous variable are TICs pats. (t) and

TICs pats. (t-1). The excluded instruments are IV (t) (col. 2); IV(t-1) (cols. 3); IV(t) and IV(t-1) (col. 4-5).

All variables are expressed in logarithmic form. All regressions are (analytically) weighted by the total number

of patents over the period of analysis. The �rst-stage pane reports the Angrist and Pischke (2009) �rst-stage F

statistics for tests of weak identi�cation. *** p<0.01, ** p<0.05, * p<0.1
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Table 8: The e�ect of TIC patents cited by local non-TIC
(1) (2) (3)

Dep. var. Non-TIC patents

Method OLS IV - 2SLS

TICs pats loc. cited . (t) 0.045*** 0.011 0.119*

(0.016) (0.020) (0.067)

TICs pats.loc. cited (t-1) 0.115*** 0.093*** 0.093*** 0.198***

(0.027) (0.023) (0.026) (0.051)

Other TICs pats (t) 0.095*

(0.051)

Other TICs pats. (t-1) 0.020 0.051*

(0.020) (0.027)

Other controls YES YES YES

FIRST STAGE REGRESSION

AP TICs pats. (t) 10.64

AP TICs pats. (t-1) 11.02

Period f.e. YES YES YES YES YES

MSA f.e. YES YES YES YES YES

Observations 840 840 840 840 840
Note: robust standard errors, clustered at MSA level, in parentheses. The TIC patents variables include only

patents which are cited by non-TIC patents authored in the same MSA. The time interval is 1988-1999, divided

in three times period of four years each. The other controls are those listed in tab. 5.

Table 9: First-stage regression and falsi�cation test
(1) (2) (3) (4) (5) (6)

Dep. var. TIC patents

Level of aggregation MSA MSA-CAT MSA-SUBCAT

Estimation method OLS OLS OLS OLS OLS OLS

IV 0.973*** 1.247*** 0.933***

(0.289) (0.320) (0.305)

Placebo IV 0.490 -0.092 -0.021

(0.419) (0.264) (0.064)

Other controls YES YES YES YES YES YES

Period f.e. YES YES YES YES YES YES

MSA f.e. YES YES NO NO NO NO

MSA-Cat. f.e. NO NO YES YES NO NO

MSA-Subcat. f.e. NO NO NO NO YES YES

Cat.*Period f.e. NO NO YES YES YES YES

Subcat.*Period f.e NO NO NO NO YES YES

Observations 840 840 3,521 3,521 15,023 15,023
Note: robust standard errors, clustered at MSA level, in parentheses. The time interval is 1988-1999, divided in

three times period of four years each. The placebo IV is de�ned in section 5.1. The other controls are those listed

in tab. 5, 6, and 7.
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Appendix A: Patent data and geographical assignment

Patent data come from the United states Patent and Trademark O�ce (USTPO) database as

processed by the National Bureau of Economic Research (NBER), described in Hall et al., 2001.

To the original dataset I add the inventors' unique identi�er developed by Trajtenberg et al

(2006) and the standardized assignee name available in Prof. Bronwyn H. Hall's website.20 The

latter, however, is not fully reliable as i) the complex ownership structure of companies may

imply that di�erently named assignees correspond, in fact, to the same company, and ii) the

same company name can be spelled in di�erent ways (and the standardization routines cannot

completely solve the problem).

I eliminate patents granted to inventors residing outside US and geolocated all the cities of

residence of inventors through the ArcGis geolocator tool (based on the 2000 gazzetter of US

places from US Census) and the Yahoo! Maps Ib Services. In the database both the address

of the inventor(s) and the applicant(s) are reported, but the former is considered to be a more

precise indication of the inventors' workplace, as often applicants' address refer to the location

of the headquarter, which may not necessarily coincide with the location of the R&D lab. In the

case where several authors are listed for the same patents and they live in di�erent cities, the city

of residence of the �rst author is chosen; this is a standard procedure in patent literature, and

Carlino et al. (2007) show that the approximation is substantially innocuous, also considering

that the majority of the patents are single-authored. A robustness test based only on single-

authored patents, i.e. the part of the sample which should not be a�ected by a measurement

error arising from an imprecise geographical assignment, produces results which are very similar

to the baseline estimates. The geocoding operation was successful for 1,161,650 patents, which

correspond to 97% of the database. I then assigned cities to counties using the ArcGis spatial

join tool, and subsequently counties into MSAs (1993 de�nition).

20http://elsa.berkeley.edu/~bhhall/
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