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Loi de Zipf, Loi de Gibrat et Cointégration 

Résumé 

Cet article s’intéresse aux méthodes qui permettent de détecter la nature des processus de 

croissance urbaine. Le test de cointégration permet de distinguer deux versions de la loi de 

Gibrat : une première version dans laquelle les chocs exogènes sont iid entre les villes et dans le 

temps (impliquant une convergence de la distribution des tailles de villes vers la loi de Zipf), et 

une seconde version dans laquelle les chocs sont seulement iid à travers le temps (impliquant 

ainsi une conservation de la structure initiale de la distribution des tailles de villes). 

 

Mots-clés : Loi de Zipf, loi de Gibrat, tests de cointégration, tests de racine unitaire, croissance 
urbaine, système urbain 

 

 

 

Zipf’s law, Gibrat’s law and Cointegration 

Abstract 

This paper examines the methods to detect the nature of the urban growth processes. It seems that 

cointegration testing enables to disentangle two versions of Gibrat’s law: a first one with growth 

shocks that are iid across time and cities (implying convergence of the city-size distribution towards 

Zipf’s law), and an alternative one with growth shocks that are only iid over time (implying 

conservation of the initial structure of the city size distribution). 

 

Keywords: Zipf’s law, Gibrat’s law, Cointegration tests, unit root tests, urban growth, urban 
system 
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1. Introduction 

 

Many papers dealing with urban growth theory try to test Gibrat’s law (Eeckhout, 2004, 

Gonzáles-Val, 2013). According to Gabaix (1999), this law is actually a random growth process that 

allows explaining one of the most important statistical regularities in urban economics: Zipf’s law 

(Krugman, 1996).  

 

Gibrat’s law is a stochastic process in which city i’s share of national urban population in period t, 

noted ��,�, is that in period t-1 multiplied by ��,�, where ��,� is identically and independently 

distributed (iid) across cities and time (Gabaix, 1999): 

��,� = ��,���,���      (1)  

To test the empirical relevance of Gibrat’s law, Clark and Stabler (1991) recommend making use 

of unit root testing, and the literature widely agrees on this point (see among others Sharma, 2003). 

The basic Dickey-Fuller unit root test can be formulated as follows: 

∆
�	��,� = 
�	
�	��,��� + ��,�     (2)  

If Gibrat’s law is verified, we have the non-stationary unit root process ∆
�	��,� = 
�	��,�, so the 

Dickey-Fuller test should give an estimated value 
�� = 0. The presence of a unit root implies that 

urban growth depends only on exogenous shocks (��,�) without any restoring force.  

 

However, the presence of a unit root is also consistent with the alternative unit root 

process	∆
�	��,� = 
�	��, corresponding to another formalization of Gibrat’s law of independence 

between growth rates and city sizes 

��,� = �̅���,���,     (3) 

where �̅� is iid over time, but not across cities (so the growth shocks are collinear in the cross-

section). Note that urban systems are generally characterized by the existence of several cities 

belonging to a same city-type, such as administrative cities, touristic cities, mining cities, etc. One 

should thus expect that cities belonging to the same city-type are affected by similar random growth 

shocks, implying that in these subsamples, urban growth should look something like the collinear 

process (3). Against this background, it should be mentioned that Gabaix’s proof of convergence of a 

Gibrat process towards a Zipf distribution has been established for process (1), but it is not clear 

whether it still holds for the collinear process (3). 
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 The fact that unit root testing does not enable to distinguish between the Gabaix 

formalization of Gibrat’s law (1), and the alternative process (3), leaves a gap in the empirical 

understanding of Zipf’s law. In order to disentangle between these two processes, we propose the 

use of cointegration tests.1 

 

The remainder of this paper is organized as follows. Section 2 proves that cointegration is 

inconsistent with the Gabaix process (1), but not with the collinear process (3). Section 3 proves that 

process (3) does not give rise to convergence towards a Zipf distribution. Section 4 concludes. 

 

2. The inconsistency of cointegration with Gibrat’s law “à la Gabaix” 

 

Take the Gabaix (1999) formalization of Gibrat’s law (1) with a  ��,� distribution �(�) 

characterized by	�(�) = 	�� 	 and  ���(�) = 	��� verifying |	��		| < 	∞  and 0 < 	��� < 	∞ . Taking 

natural logarithms, we get equation 


���,� = 
�	��,� + 
���,���,        (4) 

which is evidently integrated of order 1. Remark that for realistic annual city growth rates,  
�	��,� is 

well defined, because the growth factor 	��,� is positive. In empirical applications, we have necessarily 

an initial observation ��,!, so we can rewrite equation (1) as follows: 

��,� = ��,� × ��,��� × …	× ��,�	 ×	��,!.   (5)  

In the same way, we obtain for city j: 

�$,� = �$,� × �$,��� × …	× �$,�	 ×	�$,!.   (6)  

Now recall that cointegration between two I(1)-variables means that there is some linear 

combination of these variables which is I(0). So we have to find a way to link equations (5) and (6) in 

a manner that enables us to formulate a linear combination of  ln ��,� 	and ln �$,�	. A general way of 

doing that is to raise expressions (5) and (6) to powers '� and '�, with ['�'�]′ ≠ [0	0]′, to divide the 

powered equation (5) by the powered equation (6), and then to take natural logarithms. We get the 

cointegration equation  

,�$,� = '�	ln ��,� − '�	ln	�$,� −	.�$,!	      (7) 

                                                      
1 The well-known low power of cointegration tests does not preclude this empirical use. Due to the fact that unit root tests and cointegration 
tests are similarly affected by low power, the usual methods of dealing with low unit root power can be applied to cointegration testing: i) 
counterchecking of non-rejections of a unit root by means of stationarity tests such as the KPSS-test (Kwiatkowski et al. , 1992) and ii) 
recourse to panel tests proposed by Levin et al. (2002) and Im et al. (1995). 
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where .�$,! = '�	ln	��,! −	'�	ln	�$,!	has a natural interpretation as the difference between the logs 

of initial population levels of cities i and j, and with ,�$,� =	 ('�	ln	��,� −	'�	ln	�$,�) +	('�	ln	��,��� −

	'�	ln	�$,���) +⋯+ ('�	ln	��,� −	'�	ln	�$,�).  

Now define the process {1�$,�}: 

1�$,� = 	'�ln ��,� − '�	ln	�$,� 		 .      (8) 

1�$,� is a linear combination of (log transformed) iid processes, so it is itself iid, with mean 

�31�$,�4 = 	�5 and variance ���31�$,�4 = 	�5�  verifying	|	�5	| < 	∞ and  0 < �5� < 	∞. We can now 

rewrite ,�$,� as follows: 

,�$,� =			1�$,� +	1�$,��� +⋯+	1�$,�     (9) 

implying �3,�$,�4 = 	 6	 × �5 and ���3,�$,�4 = 6 ×	�5� .	 Recall that integration of order 0 

requires that the first two theoretical moments are finite and independent of time. The only vectors 

['�'�]′ which assure time independence of �3,�$,�4 are those verifying '� = '�. But this vector 

choice leaves unchanged the variance, we still have ���3,�$,�4 = 6 ×	�5� .  By consequence, ,�$,� is 

not integrated of order 0, implying that ln ��,�	and ln �$,� 	cannot be cointegrated. 

 

For the collinear process (3), we get exactly the opposite result. Proceeding in the same was 

as above, we find: 

,�$,� = 	['� −	'�] 	× [ln �̅� + ln �̅��� +⋯+ ln �̅�].    (10) 

By choosing '� = '�, we obtain the degenerate random variable ,�$,� = 0 for which time 

independency of first and second moments is trivially verified. 

 

3. Gibrat’s law and convergence to Zipf’s law 

 

The formal proof of convergence of Gibrat’s growth to a Zipf’s distribution is based on city 8’s share 

of national urban population: 9�,� =	
:;,<
∑ :;,<;

 (Gabaix, 1999). Gibrat’s law thus writes as follows 

9�,� = ��,�9�,���.        (11)  
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Gabaix shows that the tail distribution of city sizes >�(9) = �39�,� > 94 converges to the Zipf 

distribution which is characterized by �39�,� > 94 = �	9��, for some parameter � and over a large 

range of sizes 9. 

Equation (11) can be rewritten  

 ��,� = ��,�		�̅�		��,���      (12)  

with �̅� =	
∑ :;,<;

∑ :;,<@A;
  and allows to break down the Gibrat random growth process into overall urban 

growth shocks BC� and city-8 specific growth shocks ��,�.  

Importantly, one cannot relax the assumption of a growth process based on shocks that are 

iid across time and cities. Suppose in fact growth shocks which are iid across time but collinear in the 

cross section, impacting growth of cities 8 and D in the same sense (i.e. a given shock cannot 

simultaneously lead to an increase of 8’s and to a decrease of D’s population). In this instance, 

equation (12) transforms to the collinear process (3), where BC� is iid across time and has some 

convenient density distribution �(�̅).2 Process (3) implies the following expression for city 8’s 

population share in period 6 + � : 

9�,�EF =	
�G<HI		×…	×	�G<HJ		×	�G<HA		×	:;,<
�G<HI		×…	×	�G<HJ		×	�G<HA		×	∑ :;,<;

=	9�,�   (13) 

Equation (13) highlights that there is no convergence towards a Zipf distribution, because the 

initial distribution of city size shares is perfectly conserved over time. So we can conclude that the 

assumption of growth shocks that are iid across time and cities cannot be relaxed in the Gabaix 

(1999) proof. 

 

4. Discussion and conclusion 

 

Most papers applying time series methods on the analysis of urban growth focus on unit root 

testing in order to prove the validity of random growth à la Gibrat. By contrast, cointegration testing 

is scarcely used in this literature: Chen et al. (2013) highlight cointegrated growth of a minority of 

Chinese cities sharing important location-specific characteristics (same region, same resource 

endowment etc.); Sharma (2003) finds cointegration between the growth of the summed population 

of a set of 100 major Indian cities and the population growth of most of the individual cities of this 

set (89%). While these contributions reveal the existence of cointegration schemes in urban growth 

                                                      
2 Formally, ��,� becomes a time-invariant collinearity coefficient K� = 1	∀	8. 
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series, they do not formalize the logical relationships between cointegration, Gibrat’s law and Zipf’s 

law.  

 

Our paper aims at filling this gap. In fact, we show that (unit root testable) random growth 

may correspond to two versions of Gibrat’s law, with diametrically opposed implications for 

cointegration and convergence behavior. The well-known Gabaix formalization (1) establishes that 

growth shocks are iid across time and cities, ensuring convergence of the city-size distribution 

towards Zipf’s law (Gabaix, 1999); we prove that this process is inconsistent with cointegrated city 

growth.3 The second version of Gibrat’s law (3) is characterized by growth shocks that are iid across 

time, but collinear in the cross-section; process (3) is consistent with cointegration, but it does not 

converge towards Zipf’s law.  

 

In spite of their technical similarity4, unit root tests and cointegration tests should thus be 

regarded as complementary tools, likely to provide guidance on the precise nature of urban growth 

and to give a better empirical understanding of Zipf’s law.5  

                                                      
3 This inconsistency result also holds for Sharma’s approach of testing for cointegration between the growth of individual cities and overall 
urban growth (see appendix 1). 
4 Cointegration testing is unit root testing applied on the residuals of a linear combination of time series. 
5 For a similar purpose, Giesen and Südekum (2011) use non-parametric methods. 
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Appendix 1 

The proof presented in section 2 can be extended to Sharma’s approach of testing for 

cointegration between the natural logarithms of each individual city i’s size and the sum of 

city sizes across all i,  �NOO,� =	∑ ��,�� . If each i grows according to equation (1), the growth of  

�NOO,� is given by  

�NOO,� = �NOO,��NOO,���,       (A) 

with �NOO,� =	
∑ :;,<;

∑ :;,<@A;
 . Proceeding in the same way as in section 2, we get  

,�,NOO,� =		 	1�,NOO,� +	1�,NOO,��� +⋯+	1�,NOO,�     (B) 

with 1�,NOO,� = 	'�ln ��,� − '�	ln	�NOO,�	, characterized by �31�,NOO,�4 = 	�5G 	and 

���31�,NOO,�4 = 	�5G
� ,  verifying |�5G | < 	∞ and 0 < 	�5G

� < ∞. The two first moments of ,�,NOO,� 

are �3,�,NOO,�4 = 	6	 × �5G   and 

���3,�,NOO,�4 = 6 × �5G
� + 	2∑ ∑ QRS	(1�,NOO,�ET, 1�,NOO,��O)���

OU�TE�
���
TU! . Time independency of 

���3,�,NOO,�4 requires  that QRS	(1�,NOO,�	, 1�,NOO,���) = -0.5 �5G
� , but this is not a general property 

of ,�,NOO,�. It is for example not verified for standard density distributions (normal, uniform, 

lognormal etc), implying that ln ��,� and ln �NOO,� are not cointegrated. 
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