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Résumé 

L’objectif de ce papier est de montrer comment les stratégies de sélection de collaborateurs 
influencent la structuration des réseaux de collaboration. L’analyse se construit en trois étapes. Une 
première étape identifie les stratégies de sélection de partenaires des entreprises, une seconde 
comment ces stratégies résultent en la création de clusters. Une dernière étape consiste en l’analyse 
de la structure globale du réseau qui est le résultat de l’interconnexion de ces clusters.  

Dans le but de mettre en avant l’influence du secteur d’activité sur la structuration du réseau de 
collaboration, l’analyse porte sur le secteur aéronautique en Franc et le secteur des Biotechnologies 
en France. 

Les résultats montrent que les stratégies des firmes sont les mêmes dans les deux secteurs alors que 
les structures globales des réseaux diffèrent fortement. Le réseau aéronautique est une structure 
core-peripherie avec des caractéristiques petit monde, alors que le réseau des biotechnologies ne 
présente pas de caractéristiques particulières. In fine, la différence entre les deux structures provient 
des caractéristiques des secteurs.  
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Explaining the structure of collaboration networks: from firm-level strategies 

to global network structure 

Abstract 

The aim of this paper is to show how firm-level partner selection strategies impact the structure 
a of collaboration network. The analysis is performed in three stages. A first stage identifies how 
partners select their collaborators, a second stage shows how these decisions result in clusters, 
and a final stage studies the global network structure that emerges from the interconnection of 
these clusters. In order to highlight the importance of the sectors’ influence, the analysis is 
performed on the French Aerospace and the French Biotech collaboration networks. Results 
show that the firm-level strategies are the same in both sectors while the resulting global 
network structure is different (core-periphery structure with small-world characteristics for the 
aerospace network and no particular structure for the biotech sector). The difference in the 
global network structure can be explained by sectorial characteristics. These differences define 
the manner in which knowledge flows through the network.  
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1 Introduction
The recent spur of recombination of technologies by firms collaborating with
one another is contributing to technologies becoming increasingly sophisticated
and complex. Creating new technologies therefore requires knowledge from a
multitude of technological domains. This makes it difficult, if not inefficient,
for firms to be expected to keep up with the degree of diversity of knowledge
by themselves. Consequently, firms turn to external sources of knowledge to
complement their own. R&D collaborations are one way for firms to access
external knowledge. Even though collaborations have a high risk of failing
(Mowla (2012); Barringer and Harrison (2000)), the number of collaborations
between innovating firms has been steadily increasing since the 1980’s (Gilbert
and Ahrweiler (2001)). Hagedoorn (2002) shows that collaborations related
to innovation have also increased steadily. Moreover he shows that there are
sectorial differences when it comes to these collaborations. The increase in the
number of collaborations has been observed to be significantly more important
in high technology sectors than low or medium technology sectors (Hagedoorn
and Narula (1996)).

A hypothesised consequence of collaboration is the opportunity for firms
to exchange knowledge during their collaboration (Rogers, 1995; Mowery et al.,
1996; Powell et al., 1996; Powell and Grodal, 2005; Pyka, 1999; Singh, 2005). It is
unrealistic to assume that transfers of knowledge resulting from a collaboration
are synonymous with perfect absorption of all the knowledge held by either firms
to the point that it can replace the activities of the collaborator.

However, firms can exchange information, knowledge and routines that might
improve the industrial or innovative performance of the collaborating firms.
For exemple, learning of a better software from a collaborator may improve
productivity in related activities.

There appears to be two main advantages to collaboration; the value of
recombining technologies, and the flow of knowledge that might occur during
these collaborations. As such, collaboration has proven to be beneficial for the
firm (McEvily and Marcus (2005)), its innovation (Kogut and Zander (2003);
Tsai (2001)) as well as its survival and growth (Watson (2007)).

When taken together, collaborations in a given sector can be represented
by a network. The hypothesis of knowledge flow implies that the knowledge
exchanged during a collaboration can potentially reach all firms that are in-
terconnected. This observation has drawn the attention of many researchers
who analysed the structure of networks in order to find structures that would
be efficient for this transfer (Verspagen and Duysters (2004)). Different struc-
tures have been identified to exist empirically: core-periphery (Newman (2011)),
small-worlds (Algamdi et al. (2012); Gulati et al. (2012)) and nested split graphs
(König et al. (2009)). The small-world structure has received considerable atten-
tion since it was argued to be the most efficient structure for knowledge transfers
(Verspagen and Duysters (2004)) and identified in many empirical settings.

In order to fully understand how these networks emerge, how their struc-
ture evolves and how this impacts the flow of knowledge, different aspects of
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collaboration should be studied. First, the identification of partner selection
strategies must be identified. This first step explains how the choices made by
firms result in the creation of different communities inside a network. For this
purpose an Exponential Random Graph Model (ERGM) is used. An ERGM
model is a modified logistic regression specified for the econometric analysis of
network data. Second, one need to explain these communities and analyse how
they interconnect to form a global network structure. Finally the global net-
work structure must be analysed in order to understand fully how knowledge is
created and diffuses in the network. This is the logic we will follow in this paper
and we will apply it to the French aerospace and biotech sectors. These sectors
have been chosen because they have similar characteristics from an innovation
point of view (long innovation cycles and high technology). However they are
different in their organisation, the aerospace sector is a highly organised pro-
duction chain while the biotech sector is driven by fierce competition between
large firms while smaller firms tend to be suppliers.

The first section of this paper will focus on the identification of partner selec-
tion strategies. The second section of the paper will study how these strategies
result in the creation of communities (or clusters) inside the networks. Finally
the last part of the paper will study how these communities interconnect and
create a global network structure. This structure of each of the networks will be
checked for both small-world and core-periphery properties and a comparison
will be made between the two networks.

2 Data
The networks analysed in this paper were extracted from patent applications.
Patent databases contain information on their original assignees; whenever there
are two or more original patent assignees on the document I conclude that
the patent is the result of a collaboration. Even though patents provide a
useful source of information on collaborations they are not exhaustive in the
identification of the collaborative behaviour of firms. Not all collaborations
result in patent deposits for various reasons.

Since patenting behaviour differs from country to country and rules change
from one patent office to another, I chose to consider solely patents deposited
by French companies in France. For the biotech sector a financial database
is used to extract firms that declare “research in biotechnology” as their main
activity (NACE 7211). The patent portfolio of each of the identified firms is
extracted from a patent database. This results in a dataset of 2061 patents,
deposited in France by companies located in France. The dataset is restricted
to all identified patents deposited between 1980 and 2014. The starting year
was chosen because the number of collaborations before 1980 was too low to
create a significant network.

The identification of firms working in the aerospace sector is slightly more
complicated. Many of the firms active in the sector have their main activities
in different domain than aeronautics (i.e metal works, composite materials or
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tyres). Therefore a query is build based on a combination of keywords and
International Patent Classification codes (IPC) to extract patents related to
airplanes. These IPC codes are added to the patent application by the patent
examiners. There are over 70.000 different codes used to classify patent, for
example, B64C is the codes used on all patents related to airplanes, helicopters
and cosmonautics, B64C001 is specific to the fuselage of airplanes, B64C 25/36
is a code for tyres for airplanes. The patents that resulted from the query
were analysed and the original patent assignees were extracted to create the
collaboration network.

These codes are also used to compute an indicator of technological proxim-
ity following Jaffe (1986) and Breschi and Lissoni (2001). The latter gives a
correlation coefficient which takes the value of 0 when two firms deposited no
patent using the same classification and 1 if they only deposit patents using the
same codes. Using this method I identified 11992 patents deposited in France
by companies located in France for the aerospace sector.

3 Strategic partner selection and the emergence
of clusters

The structure of a collaboration network is the result of individual partner se-
lection strategies. The aim of this first section is to identify which partner
selection strategies can explain the structure of the observed collaboration net-
work in each of the sectors. In this paper I test three strategies : Triadic closure,
technological proximity and the rich get richer principle. These strategies will
be explained in the following subsection.

3.1 Partner selection strategies
Given that collaborations fail often, any bit of information about the reputation
of a potential collaborator is valuable. Current collaborators can provide this
information about their own collaborators. A firm recommended by a collab-
orator can be considered as a less risky choice when compared to an unknown
collaborator.

In addition, given that they have a common collaborator, the chance that
they speak a common language in their work ethics is also higher. Therefore,
for two firms the probability of collaboration is higher if they have a common
collaborator. The latter is referred to as triadic closure.

Technological proximity measures if firms work on similar technologies. Prox-
imity is high when firms work on the same technologies; low when they work on
different technologies. The relation between the probability to collaborate and
technological proximity is no expected to be linear. Firms that are close will
be competitors on the market; their probability will be low. As the proximity
decreases, the probability should increase until proximity becomes too low. In
short, I expect to find an inverted U-shape relation between the probability to
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collaborate and technological proximity. In this model the technological prox-
imity was computed following Jaffe (1986) andBreschi and Lissoni (2001). Since
we aim at measuring the proximity between two firms, we only used patents that
were not deposited through collaboration, this ensures that the firms master the
technology themselves.

The rich get richer principle is the idea that the probability of firms col-
laborating increases with the number of existing collaborations. This is also
referred to as preferential attachment (Barabási and Albert (1999)). This can
be due to the fact that some firms are larger and hence are able to sustain more
collaborations, or this can also be the result of a reputational effect.

3.2 An Exponential Random Graph Model
In order to verify that these strategies can explain the observed network struc-
ture an econometric model is developed. Previous work has focused on the
identification of partner selection strategies, notably ?, in this paper the prob-
ability of collaboration based on different strategies is computed. However, the
model does not account for the structure of the network. In other words, they
considered all collaborations to be independent. In a network setting this may
however not be the case. The reason A collaborates with B is often dependent
upon collaboration between A and C. The observations are therefore not inde-
pendent. An ERGM model takes these effects into account; it models the global
structure of a network while allowing inference on the likelihood of a link be-
tween two nodes. It thus computes the odds of a collaboration given the current
structure of the network.

These models are rather recent but are stating to gain momentum in eco-
nomic literature (Brennecke and Rank (2017); Ter Wal (2013); Lomi and Pallotti
(2012); Caimo and Friel (2011)). An ERGM is basically a modified logistic re-
gression. The general form of an ERGM model is given by:

P (X = x|θ) = 1
k(θ) · exp(θ1z1(x) + · · ·+ θnzn(x) )

where X is the simulated network, x the observed network and θ a vector of
parameters, zi is a difference variable and k(θ) the normalisation constant.

The model starts with an empty network and creates links between the nodes
based on the values of the variables we have found from the empirical network.
Using a Monte Carlo Markov Chain method the model simulates a network
structure, changing the parameters of the model until the generated network
is significantly identical to an observed network (on average). The model is
estimated with a Markov Chain Monte Carlo procedure that identifies the pa-
rameters that maximise the likelihood of a graph (i.e the likelihood that the
graph generated by the model is significantly identical to the observed graph).

ERGM models suffer from degeneracy issues which in many cases results in
problems with finding the maximum likelihood. In order to solve this issue, a
slightly modified version of the general model is used in this paper: the curved
exponential random graph model. The modification consists of adding weights
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Table 1: Examples of the 2-kstar, triadic closure and triangle network sub-
structures

on the degrees of the nodes (Lusher et al. (2012)). These weights keep the
higher degree nodes from having too much influence resulting in degeneracy.
Two main methods exist when it comes to solving degeneracy. The gwesp and
gwesp.alpha parameters correspond to the first method, the altkstar parameter
to the second method. In the end the model with the lowest Akaike criterion
will be retained as the best model.

Results The edges variable plays the same role as a constant in a linear re-
gression. A kstar2 is a star with two links, in other words A connected to B
and C, this variable is identical to degree2. The variable triangle identifies if
triangles have an important role to play in the structuring of the network, and
we do find them to be significant. More interestingly, when both the degree2
(or kstar2 ) and the triangle variable have a significant effect we can conclude
that in the model triangles have tendencies to be closed (Lusher (2011); Harris
(2013); Ter Wal (2013)). This proves the first hypothesis that triadic closure
has a significant effect in the structuring of the collaboration network. In both
sectors, firms with a common collaborator have a higher probability of collab-
orating than firms without a common collaborator. We can explain this obser-
vation by the idea that firms will rely on information of their collaborators to
pick new collaborators. In addition, there can be productivity gains associated
with this behaviour since it is likely that the three firms will have fairly sim-
ilar methods. From a network structure perspective, this behaviour results in
the creation of triangles in the network. These triangles appear to be intercon-
nected closely between firms with a certain level of technological proximity. The
variableedgecov.proximity2 represents the square of the technological proximity
that has a significant impact on the structuring of the network. Therefore, there
appears to be an inverted U-shape relation between the probability of link cre-
ation (i.e collaboration) and the technological proximity between firms. Firms
too far from each other have low odds of collaboration as do firms that are too
close. The firms that do interconnect have an intermediate level of proximity.
This also appears to confirm the existence of a competition effect, which re-
duced incentives to collaborate between technologically close firms. Firms that
are further away have less competition and hence appear to collaborate more.
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Figure 1: Regression results for the aerospace sector (table on the left) and the
Biotech sector (table on the right)

The triangles that are formed result in the creation of technological clusters.
These clusters contain densely interconnected firms working on similar tech-
nologies. The alkstar variables that serve the purpose of reducing degeneracy
also play a second role. They also hint to the fact that there are nodes with
many links and nodes with few links. This is modelled more explicitly in the
biotech sector by the enumeration of the different degree levels (degree2, degree3
etc.). Interestingly, the strategies for collaboration appear to be the same in
both sectors.

The fact that the degree variables are significant implies that these nodes
have a structuring role to play in the network. This concurs with observations
made by Cassiman and Veugelers (2002); Colombo (1995), which have noted
that firms active in collaboration are mainly large firms, able to sustain many
collaborations. The results of the ERGM model show that the structure of the
network is built around these large firms.

It is possible that firms with a high degree are positioned inside the clusters
themselves or that they play a role of gatekeeper, i.e they interconnect different
communities. This question is the subject of the next section.
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4 The interconnection of communities
In order to get a first idea of the interconnection of the communities in each
network, we can proceed first by a visual inspection. Figure 4 provides the
network of the biotech sector; figure 4 provides the collaboration network of
the aerospace sector. Each node in the network is a firm and a link represents
at least one co-deposited patent (i.e a patent with the name of both firms as
original assignees). The colours of the nodes and edges represent the identified
communities. These communities were identified using a modularity maximisa-
tion algorithm created by Blondel et al. (2008). The algorithm creates a random
network with the same number of nodes and edges as the empirical network. It
assigns random links between the different nodes of the network. It then com-
pares the number of links each node has in the empirical network to the number
in the random network. If there is a significant difference, the algorithm will
consider that the connections are not random and hence that there is an em-
pirically valid community. The algorithm does not require the user to provide
a number of communities; the number is selected automatically as the number
that maximises the modularity function. In short, modularity aims at maximis-
ing the number of links inside a community and minimise the number of links
between communities. Using this method we can identify different communities
that have been coloured for clarity.

Of course there is no guarantee that the identified communities make sense.
Therefore some verification is required. This is accomplished by hand with the
aim of finding a common feature between the firms (market tier, R&D focus). As
we have shown in the ERGM model, firms regroup according to technological
proximity (or competitive pressure). The identified communities reflect this,
since the different communities in the biotech sector reflect the different market
segments of the biotech industry (red biotech, blue biotech, yellow biotech and
so on). In the case of the aerospace sector a similar conclusion is found; each
community is built around firms that work on specific part of the airplane.

In the case of the aerospace sector, firms with a low number of links connect
to a first order supplier. The latter has therefor a high degree. These first
order suppliers are connected to the most connected firm: Airbus. This means
that the structuring role of the density identified by the ERGM model can be
explained by the presence of many second order suppliers with a low number
of links, connected to a lower number of first order suppliers with high density
which are in turn connected to the central firm with the highest number of links:
Airbus.

To some extent, the same appears to apply for the biotech sector. Each
community appears to have a central firm around which other firms interconnect.
This explains the similar observation that the "rich get richer” principle applies
to both sectors. Larger firms have more collaboration and hence the probability
that they will collaborate in the future is higher.

The interconnection of the different communities is achieved by the first-
order suppliers in the case of the aerospace sector. The results appear similar
in the case of the biotech sector even though there are more firms playing the
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role of gatekeeper between communities.
In short, firms collaborate with firms that represent a relative low market

threat and use common collaborators to find new partners. The latter results in
the creation of triangles and to a larger extent, in the creation of clusters. The
rich get richer principle identified in the ERGM model can be explained by the
presence of larger firms inside the cluster which attracts a large number of firms
with a small number of connection. The latter observation would lead to believe
that both networks could have a similar global structure that could resemble
a scale-free structure. A scale-free network structure is defined as a network
structure in which there are a large number of nodes with a low degree and
small number of nodes with a high degree. In addition, since there is a central
firm interconnecting all clusters in the aerospace sector, we could expect that
this network is characterised by a high level of clustering (i.e many triangles
in the structure) and a low average distance between the nodes (the central
firm connecting the communities reduces the distance one has to travel from
one node in the network to another). This type of structure is known as a
small world structure. This particular type of structure has implications for the
efficient diffusion of knowledge in a network, because of this we will check for
small world characteristics in both networks.

5 Collaborative behaviour at the sectoral level
5.1 A core of intensely collaborating firms: Scale-free net-

works
Some networks are defined by a densely interconnected core and a more or less
sparsely connected periphery as shown in Figure 5.1. This type of structure has
been identified in citation networks, the internet and lexicographical networks
amongst others Estrada (2012). This particular structure results in a core of
a few densely connected networks and a periphery of many sparsely connected
nodes. Having this type of structure makes for a particular degree distribu-
tion when compared to network with a more homogenous distribution. We
therefore require a method to identify a core-periphery structure statistically.
Core-periphery networks are identified by their degree distribution, we therefore
start by plotting the cumulative degree distribution of a network. Figure 5.1
gives an example of a degree distribution. This distribution gives the degree on
the x-axis and the number of nodes with that degree on the y-axis. From this
distribution we can see that the number of nodes with a high degree is low. In
addition, the number of nodes with only a few links is high. This information
alone is not sufficient to conclude that the network has a core-periphery struc-
ture Newman (2011). In order to get more precise information out of this data
we are going to transform the degree distribution into a cumulative frequency
distribution (Figure 5.1).

The Cumulative Frequency Distribution (CFD) transforms the degree dis-
tribution into a probability distribution. From this distribution we can read the
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Figure 2: The collaboration network of the french Biotech sector
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Figure 3: The collaboration network of the french Aerospace sector
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Figure 4: Example of a degree distribution

probability that a node taken at random from the graph has degree x. Note
that this distribution is plotted in a log-log scale. The CFD then represents an
equation linking frequency and degree. According to the network that is being
represented the CFD highlights specific aspects of the network structure. In this
example we can see that the relation between the density and the frequency is
linear. As such the relation can be written:

ln(y) = a · ln(x) + b ∀ a < 0 (1)

This is the equation for the log-log scale. On the normal scale the form of
this function is given by:

eln(y) = ea·ln(x)+b

y = ea·ln(x) · eb

y = eln(xa) · eb

y = eb · xay = C · xa

This highlights the fact that when we increase the density by a factor of k,
the frequency drops by a factor ka with a < 0. The latter is true for each value
the density might take. For this reason, when the CFD of a network has a linear
form on the log-log scale, the network is referred to as a scale-free network.

The scale-free network is not the only core-periphery structure. Exponential
and log-normal distribution can also represent core-periphery structures. The
main difference between the distribution is the manner in which the core tran-
sitions to the periphery. In a very abrupt case as in figure 5.1 the transition is
very abrupt. 67% of the nodes has a degree of one while the 33% of the nodes
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Figure 5: Example of a cumulative frequency distribution

Figure 6: Core-Periphery illustration

have a degree of 5. The CFD will show a sharp drop in frequency between
densities 1 and 5. The scale-free structure is a particular case in which the
decrease in frequency is constant. Another case can be imagined in which there
are many nodes of degree 1, 2, 3 and 4 making for a more dense periphery. This
observation is close to the observation of Newman (2011) who described this
idea when he observed Lorentz style curves in the distributions.

The periphery of such a network contains less nodes with a low density. The
periphery is more interconnected than the scale-free network. The inverse would
be true if we were to have a convex function. The shape of the adjusted function
informs us about the type of core-periphery structure, ranging from sparse to
dense. In order to conclude to a core-periphery structure we fit a particular
function (power-law, log-normal distribution) to the data. The functions are
fitted using a maximum likelihood estimation. We then use a bootstrapping
method in order to assess the goodness of fit which provides us with a p.value.
The null hypothesis (data comes from a power-law) is rejected when the p.value
is below a threshold.
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5.2 Interconnected clusters of firms: small-world networks
Small world networks are structures defined by a low average distance between
nodes and a high clustering coefficient. The clustering coefficient measures
how densely connected a network is; it does so by counting the number of
triangles and dividing it by the possible number of triangles in the network. For
instance, in a network with four nodes there are four possible triangles. If all
four exist, the clustering coefficient would be 4

4 = 1, the highest possible score.
In this example all possible links exist, the network is complete and therefore
very dense. Saying that a network is highly clustered has no meaning, there
needs to be a benchmark to which we can compare the clustering coefficient in
order to judge if clustering is high or low. The reason why empirical networks
exhibit clustering is because of social / economic / geographic / ... motivations.
Individuals that are geographically close or work in the same company have a
higher chance of knowing each-other and therefore to connect with each-other
creating clusters. If these interactions were random there would be no (or very
little) clustering. This is why a random networks i used as a benchmark (Erdös
and Rényi (1959); Barabási and Albert (1999); Watts (1999)). For a given
empirical network a random network with the same number of links and nodes
is created and the clustering coefficient of this networks is computed. The
coefficient of this network is then compared to the coefficient in the empirical
network. A network is a small world if its clustering coefficient is significantly
higher than that of a random graph of identical dimension (i.e same number of
nodes and same number of links) Watts (1999); Gulati et al. (2012). This would
imply that the graph is not random and that there are some underlying rules
dictating the creation of ties in the network.

The same method is used for the average distance, one would want it to be
roughly identical to that of a random graph (Watts (1999); Gulati et al. (2011)).
We note Cr (Lr) the clustering coefficient (path length) of the random network
and C (L) the clustering (path length) of the empirical data.

Thus, for a network to be considered a Small World we need to observe
C

Cr >> 1 and L
Lr ≈ 1.

5.3 Scale-free small worlds
The methods exposed in the previous subsections were applied to the network
data for the biotech sector and the aerospace sector. The analysis was performed
in a dynamic setting. At first, I consider a cumulative method in which each year
links are added to the network, none are removed. This of course implies that
links between firms at the start of the period are still present at the end of the
period. I decided to test this method first because i have had the opportunity to
discuss the question of collaboration is the aerospace sector with R&D decision
makers from large companies of the sector. They concur to the fact that one-
shot cooperations are rare. Even if no patent is deposited the collaborations are
continuous, spanning often over different projects.

The analysis is also performed within a 5-years window in the aerospace
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network, meaning that all collaborations outside of the window are deleted from
the network.

Figure 5.3 shows the fitted functions to the CDF for the aerospace sector.
Whenever the reported p.value associated with the Kolmogorov-Smirnoff test
(bottom left corner of each graph) exceeds a given threshold, the fit is statis-
tically significant. We can then conclude that the degree distribution of the
network comes from the same distribution as the one we check for. The green
(plain) line is the log-normal function, the (dotted) red line is the power)law
function. The results show that both functions are a good fit for the data.
However, the power-law function is only fitted for part of the distribution, since
it starts at a high density, therefore it only explains part of the network: the
nodes with the highest number of links. The manner in which Airbus and its
first order suppliers are interconnected follows a scale-free structure, the manner
in which the first order suppliers are connected to the other suppliers does not.
In the end the log-normal distribution fits the data much better. The structure
of the collaboration network has a core-periphery structure. This implies that
the core of the periphery of the network is rather densely connected. This is
explained by the technological clusters. The core is less dense for the simple
reason that the number of first order suppliers is low.

This core-periphery structure is stable over time, whether we look at the
network through a five-year window or the cumulative method, the structure
remains core-periphery. Given the hierarchical structure of the aerospace sector,
this observation makes sense. The suppliers at the far-end of the network inno-
vate with the constraints that their product need to be compatible for the final
product (as specific part of the airplane), hence the importance of technological
proximity. The resulting products then need to be recombined by larger suppli-
ers which therefor require to master a larger diversity of knowledge in order to
be able to reassemble the smaller parts. This process continues until the final
assembler is reached: Airbus, which will have to largest number of links. In ad-
dition to working with the supplier it also has extensive links with universities
and research institutions. No such central entity exists in the Biotech sector.
The evolution of the structure of the biotechnology collaboration network shows
that the network diverges from a core-periphery structure. In the early stages
of the network a few large companies were interconnected creating a core. The
periphery was sparse when compared to the network of the aerospace sector.
As more firms enter the biotech sector, clusters are becoming increasingly well
defined confining larger firms in their communities. The last graph in figure 5.3
shows that neither the power-law nor the log-normal distribution fit the data.
The CFD does however present an interesting result, transition phases seem
to emerge in the distribution. A first phase for low densities with sharp drops
in frequency, a second for densities between 10 and 20 and a last non linear
phase for the highest number of collaborations. This observations shows that
there are many firms with a low degree (first phase) since there is a sharp drop
in frequency between different density levels. In the middle, the drop is less
important showing that there are not many firms with this intermediate level
of collaboration. The final phase shows that there are few firms with many
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collaborations, and the scaling in their size in not linear. When analysing the
final part of the distribution from a dynamic point of view, we can observe that
these firms have increased the number of collaborations over time and some have
managed to collaborate more than others. Int the end then, the Biotech sector
is not a core-periphery network because it misses these intermediary firms and
most central firm in the network. This concurs with result found by Zidorn
and Wagner (2012) who showed that firms in the biotech sector tend to collab-
orate in order to specialise, they hence have no incentive to interconnect with
clusters working on other market segments. From this perspective, the motiva-
tions for individual firms are identical in both sectors, clusters are created for
the same reasons, but the interconnection of these clusters results in different
overall network structures.

When we look at the small world indicators, we come to a similar conclu-
sion. The biotech network does not present any small world characteristics.
The adjusted average distance between the nodes is too high. This is explained
by the same reason as for the core-periphery structure: the missing central
firm. The presence of a central firm reduces the average distance between all
nodes in the network. The aerospace network satisfies this condition. In both
networks however, the clustering coefficient is high enough. As a final conclu-
sion we can say that the biotech network has no canonical structure while the
aerospace sector present both core-periphery and small world properties. From
a dynamic perspective it reaches this structure around the year 2000. The latter
is verified whether observing the network from a 5-year window or a cumulative
perspective. The Aerospace network hence presents both core-periphery and
small world properties. The structures are not mutually exclusive, they both
highlight a different angle of the structure of a network.

From a knowledge flow perspective, it should be clear by now that the knowl-
edge created in these networks has no reason to flow throughout the whole net-
work. The creation and diffusion of knowledge is localised within the cluster to
which it belongs.

6 Conclusion
The analysis of a collaboration network can be performed at different levels.
Each level provides an insight into the understanding of the other levels. At
the micro level we have shown that firms use triadic closure, repetition of col-
laboration and technological proximity as partner selection strategies. These
strategies are used in both the biotech and the aerospace sector. These strate-
gies result in the creation of clusters that can be explained by the specificity
of each sector. In the aerospace sector, clusters emerge between firms working
on parts on an aircraft that require technological overlap, while in the biotech
sector collaboration is defined market segment. he inverted U-shape relation be-
tween the probability to collaborate and technological proximity can therefore
be understood as both technological compatibility and competitive intensity.
The real difference between the two sectors appears once we study the global
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Figure 7: Core-Periphery identification in the Aerospace Collaboration network.
The left column provides the window data, the right column the cumulative
data.
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Figure 8: Core-periphery identification in the French Biotech Collaboration
network. Data from the cumulative method only.
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network structure, in other words, the manner in which the different communi-
ties are interconnected. The value chain structure of the aerospace sector creates
a network with a few firms with a high level of collaborators at its core. These
firms ensure the efficient flow of knowledge coming from the different commu-
nities inside the network. This core is absent from the biotech collaboration
network. The structure of a network provides information about R&D strate-
gies of firms, even if the strategies are the same at the firm level they still can
result in very different network structures as shown by the results here. If one
is interested in understanding the manner in which new knowledge is created,
analysing the different levels is a requirement. The structure of the network
shows that knowledge is created in clusters that are sparsely interconnected
through a small number of large firms. Since there is barely any inflow of new
knowledge in these clusters, a risk of diminishing diversity exists. In addition
we know that firms prefer working with historical partners and choose to work
with partners of partners inducing an even greater risk of loss of diverse knowl-
edge. The latter is the case in both sectors. The main difference resides in the
presence of a central firm interconnecting the different clusters in the biotech
sector compared to the aerospace sector. From a knowledge flow perspective
this reduces the speed at which knowledge could flow through the network. The
role of this firm is vital in the aerospace sector since this central firm centralised
all knowledge and assembles the airplane, there is no such need in the biotech
sector. Some firms work on some market tiers but none are present on all even
though there might be a potential for learning from firms in all these tiers.
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