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La diffusion d’un choc sur un réseau régulier large : le rôle des cycles transitifs 

Résumé 

Ce papier étudie les effets des cycles transitifs dans le réseau liant les institutions financières sur 
l’ampleur de la contagion financière. Nous analysons comment un choc exogène se propage sans 
contraintes dans le système, en provoquant des pertes  à travers les liens (obligations 
financières), en supposant que les institutions financières sont liées par un réseau régulier dans 
lequel la même structure se répète. L’ampleur de la contagion est mesurée par la limite des 
pertes individuelles quand la diffusion continue dans un réseau infiniment large. Cette mesure 
indique comment une structure peut faciliter la diffusion d’un choc par sa structure, sans tenir 
compte d’autres facteurs pouvant aussi jouer un rôle.  

Notre analyse montre deux résultats principaux. Premièrement, l’ampleur de la contagion 
diminue quand la longueur des cycles transitifs minimaux augmente, en gardant la densité du 
réseau constante. Deuxièmement, quand la densité du réseau augmente l’ampleur de la 
contagion peut diminuer ou augmenter, car l’addition des nouveaux liens peut diminuer la 
longueur des cycles transitifs minimaux. Nos résultats offrent de nouvelles perceptions pour 
mieux appréhender le risque systémique et  seraient utiles pour élaborer des indicateurs 
supplémentaires afin de réguler le système financier. 

Mots-clés: contagion financière, réseaux, diffusion de choc, cycles transitives, degré. 

 

Shock Diffusion in Large Regular Networks: The Role of Transitive Cycles 

Abstract 

We study how the presence of transitive cycles in the interbank network affects the extent of 
financial contagion. In a regular network setting, where the same pattern of links repeats for 
each node, we allow an external shock to propagate losses through the system of linkages 
(interbank network). The extent of contagion (contagiousness) of the network is measured by the 
limit of the losses when the initial shock is diffused into an infinitely large network. This measure 
indicates how a network may or may not facilitate shock diffusion in spite of other external 
factors. 

Our analysis provides two main results. First, contagiousness decreases as the length of the 
minimal transitive cycle increases, keeping the degree of connectivity (density) constant. 
Secondly, as density increases the extent of contagion can decrease or increase, because the 
addition of new links might decrease the length of the minimal transitive cycle. Our results 
provide new insights to better understand systemic risk and could be used to build 
complementary indicators for financial regulation. 
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1 Introduction1

Financial contagion through counterparty risk is commonly accepted to be one of the hall-
marks of the global financial crisis that started in 2007. Since the pioneering works by Allen
and Gale (2000) and Freixas et al (2000), many studies have analyzed how the structure of
financial networks affects the propagation of an external shock (see Allen and Babus 2009,
Summer 2013, Cabrales et al 2016, Hser 2015, or Glasserman and Young 2016 for reviews
of this stream of literature.) The literature has uncovered the role played by certain char-
acteristics of the network, focusing notably on density, which relates to the average number
of neighbors or average degree in the network 2. With different methodologies, this stream
of literature shows that the effect of network density on shock diffusion is non-monotonic
and depends on factors as the size of the shock, the presence of financial acceleration, level
of integration, or the diversification of the system as a whole.3.

Nevertheless, little is known about the effect of other characteristics of the network with
the exceptions of Craig et al (2014) and Rogers and Veraart (2013) on individual centrality,
or Allen et al (2012) on clustering. We contribute to this literature by studying the role
of transitive cycles in facilitating or restraining the propagation of a shock in financial
networks. Our model shows that the length of transitive cycles is an important factor that
shapes the relationship between network density and shock diffusion.

To lay out the intuitive foundation, consider two different structures of financial in-
terdependencies as depicted in Figure ??. We will provide formal definitions in the next
section. An arrow from bank 1 to bank 2 indicates that bank 2 will take a loss if bank 1
fails. We call bank 1 an in-neighbor of bank 2 and bank 2 an out-neighbor of bank 1. In
both networks (a) and (b) represented below, each institution has two in-neighbors and
two out-neighbors. Nevertheless, these two networks are not identical, or isomorphic, due
to the different structure of cycles they each possess.

We observe cycles of different length for each structure. In network (a) 1 can affect
2, 2 can affect 3, and 1 can affect 3. We call this transitivity of loss-given-default among
financial institutions a transitive cycle. In network (b) 1 can affect 2, 2 can affect 3, 3 can
affect 4, and 1 can affect 4. In network (b) the transitive cycles always include at least
four banks, while in network (a) they only include three banks. Therefore, the length of
the minimal transitive cycle is smaller in network (a) than in network (b).

In this model, we consider the structure of financial liabilities as a directed network.

1We thank Olivier Brandouy, Nicolas Carayol, Vincent Frigant, Emmanuelle Gabillon, Jaromı́r Kováŕık,
Ion Lapteacru, Francesco Lissoni, participants at the Belgian Financial Research Forum (National Bank
of Belgium), Annual meeting of the European Research Group on Money, Banking and Finance (CERDI)
and GREThA doctoral workshop for useful comments. The usual disclaimer applies.

2Acemoglu et al 2015, Battiston et al 2012, Blume et al 2011, 2013, Elliot et al 2014, Gai et al 2011,
Nier et al 2007, Gai and Kapadia 2010, Haldane and May 2011, Gofman 2014, Acharya 2009, Cabrales et
al 2013, Wagner 2011, Ibragimov, Jafee and Walden 2011, Castiglionesi and Eboli 2017, among others.

3A higher density implies higher individual diversification but it does not necessarily mean more systemic
diversity.
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Figure 1: Same degree, different cycle length

When a bank defaults after taking a large external shock, it will impose losses on other
banks to which it has liabilities. The losses-given-default in turn may cause these banks
to fail. Thus, losses propagate into the network as a flow through a system of linkages.
Inspired by Morris (2000), we assume that the population is infinite but each bank has a
finite number of links, in our case with an identical pattern4. This type of structure is what
we consider a large regular network. In this setting, we measure how a structure facilitates
shock diffusion by computing the limit of the individual loss when the distance between a
bank and the initial shock goes to infinity. A small value of this measure indicates that the
structure itself is robust and can restrain the diffusion of the initial shock to a long distance.
We therefore take this measure as an indicator of the contagiousness of the network.

In our setting, we show that the contagiousness of the network decreases as the length
of the minimal transitive cycle increases, while keeping the number of links equal and
constant for all nodes. Furthermore, increasing the connectivity of the network (or level
of diversification of the liabilities structure) can have ambiguous effects on contagiousness.
This ambiguity arises because when connectivity increases additional links may or may not
decrease the length of the minimal transitive cycle. On the one hand, when additional links
do not change the length of minimal transitive cycle (long links are added), contagiousness
decreases as connectivity increases. On the other hand, when additional links are made
to banks at a closer distance than the length of minimal transitive cycle (short links are
added), the length of the minimal transitive cycles decreases. In this case, contagiousness
decreases as connectivity increases if and only if the length of the minimal transitive cycle
is above a certain threshold. If the length of the minimal transitive cycle is lower than the
threshold, increasing connectivity by adding links to banks that are relatively close will
result in an increase of contagiousness.

To extend our analysis, we study the contagiousness of regular networks versus dif-
ferent structures having some related characteristics. First, we compare regular networks
to tree networks with same out-degree. The contagiousness of the tree networks always

4The assumption of an infinite population allows us to draw more general conclusions about the effect
of the length of the minimal transitive cycle. If each bank has assets and liabilities to a finite number of
other banks, and the total number of banks is finite, a few values of length of minimal transitive cycle are
compatible. By allowing the total number of banks to be large enough we also allow for the length of the
minimal transitive cycle to go from 3 to infinity.
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tends to zero as long as the out-degree of each node is greater than one. We note that
the contagiousness of regular network approaches the one of tree networks as the length
of the minimal transitive cycles approaches infinity. We afterwards use complete multi-
partite networks as a benchmark for comparison. Complete multipartite networks have
the property of keeping the losses constant as the initial shock diffuses into the system.
This constant loss is equal to the reduction in asset value of the direct neighbors of the
first defaulted bank. Again we find a threshold for the length of the minimal transitive
cycles, above which the contagiousness of regular structures is smaller than the one of the
multipartite networks.

These results suggest some guidelines for policy makers. First, many systemic risk
indicators have been developed, with several ones that take into account the structure
of the financial system together with financial acceleration (for example, DebtRank by
Battiston et al. 2012b, or Contagion Index by Cont et al. 2012). Our measure, focusing
solely on the structure of the network, could be used to build complementary indicators.
Knowing which region has high potential for shock diffusion may help regulators to devise
appropriate interventions in time of crisis. Furthermore, as the measure is derived without
complex financial mechanisms, its application can be adapted to other type of financial
interdependencies, such as networks of payments.

Secondly, the Basel Committee on Banking Supervision has compiled a set of global
standards for financial institutions since 1982. One of the most important objectives is to
improve the banking sector’s ability to absorb shocks arising from financial and economic
stress. In response to the 2007 global financial crisis, Basel III specifies extra recom-
mendations for systemically important financial institutions (SIFI). One step further, the
European Commission has decided to transpose some recommendations in Basel III into
laws that will be enforced starting in 2019 for the European Union. These recommenda-
tions focus mainly on variables at individual level such as capital requirement, liquidity
level and leverage ratio, with surcharge to SIFIs due to their potential important impact
to the financial system. Regarding the results presented in this paper, it would be useful
to have complementary regulations on the structure itself of the financial linkages. Banks
have to be more careful when choosing their diversification strategies, as increasing the
level of diversification might facilitate the diffusion of potential shocks, specially when the
length of the minimal transitive cycle decreases.

This paper is organized as follows. We introduce the setting in Section ??. The results
are stated in Section ??. We provide a discussion of our results in Section ?? and conclude
in Section ??.
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2 The model

2.1 The financial interdependencies

In this section we introduce the basic notions and definitions that are needed for the
analysis that follows. The interested reader can check the initial chapters of recent books
more exhaustively covering network-related definitions and measures. To name a few, see
Goyal (2007), Jackson (2008), or Newman (2010).

Let N = {1, 2, ..., n} denote the set of financial institutions or banks. Each bank i ∈ N
holds a capital buffer wi ≥ 0, owns external assets for an amount of ai ≥ 0, and has
liabilities to other banks lij ≥ 0, where j ∈ N , j 6= i. The total interbank liability held by
bank i is given by Li =

∑
j

lij. Bank i’s total assets are therefore given by ai +
∑
k

lki and

banks i’s total liabilities are given by wi +
∑
j

lij.

This interdependence can be represented by a (directed) graph over N where the set
of links g is defined by ij ∈ g for i ∈ N and j ∈ N if and only if lij > 0. To keep
the model tractable, we have taken some regularity assumptions regarding the financial
interdependence network.

Given a bank i, we define i’s out-neighborhood to be the set of banks to whom i has a
liability, i.e., N out

i (g) = {j ∈ N such that lij > 0}. The cardinality of i’s out-neighborhood
is called i’s out-degree and denoted by kout

i . Similarly, let i’s in-neighborhood be the set of
banks that have a liability with i, i.e., N in

i (g) = {j ∈ N such that lji > 0}. The cardinality
of i’s in-neighborhood is called i’s in-degree and denoted by kin

i .
A path in the network (N, g) is a set of consecutive links {i1i2, i2i3, ..., ir−1ir} ⊆ g

with is ∈ N for all s = 1, .., r and isis+1 ∈ g for all s = 1, .., r − 1. The length of a
path is the number of links in it. We say that j is connected to i if there is a path
{i1i2, i2i3, ..., ir−1ir} ⊆ g, such that i1 = i and ir = j. The distance between i and
j in the network (N, g), denoted d(i, j), is the number of links in the shortest path that
connects i to j or vice versa (the path with smallest distance between two players is called
a geodesic). A subset of nodes S ⊆ N is connected in the network (N, g) if for every pair
of nodes i and j in S either i is connected to j or j is connected to i. The network (N, g)
is connected if N is connected in (N, g). We denote by N out,∞

i the set of nodes that are
connected to i in (N, g) and by N in,∞

i the set of nodes to whom i is connected in (N, g).
A transitive cycle in the network is a path such that there exists distinct nodes {i1, ..., 1c} ⊆

N satisfying that {i1i2, i2i3, ..., ic−1ic, i1ic} ⊆ g. An intransitive cycle in the net-
work is a path such that there exists distinct nodes {i1, ..., 1c} ⊆ N satisfying that
{i1i2, i2i3, ..., ic−1ic, ici1} ⊆ g. Note that our cycles are “minimally” defined because
in our definition the nodes in the cycle are distinct (a node cannot be visited several
times). The length of a cycle is the number of links in the cycle, which by our definition
of a cycle is also equal to the number of participants in the cycle. Figure ?? below shows
a transitive and an intransitive cycle of length c = 4.
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Figure 2: Cycles of length 4

To keep the model tractable, we make some regularity assumptions regarding the struc-
ture of the network. A financial network is homogeneous if all banks have the same and
equal out-degree and in-degree, i.e. kin

i = kout
i = k and it is transitive if (i) all cycles

are transitive and (ii) for any two nodes i and j in N , if i is connected to j then j is
not connected to i. For simplicity, we assume that all positive claims are of equal value,
normalized to 1.

2.2 Bankruptcy and shock diffusion

Define xi as the total loss in external and interbank assets that bank i receives in case of
a shock.

We use the standard defaulting rules in the literature (as in Eisenberg and Noe 2001,
Elsinger et al. 2006 or Glasserman and Young 2015). Creditors have priority over share-
holders and interbank liabilities are of equal priority. When a bank receives a shock, the
losses on its external and interbank assets are reflected in capital loss. When its capital is
depleted, the bank defaults. The condition of default of bank i is given by xi ≥ wi. Then,
the total loss-given-default that bank i impose on its creditors is

LGDi = xi − wi ≥ 0

A bankruptcy event is organized as follows: the defaulted bank liquidates all of its
remaining assets and the liquidation proceeds are shared among creditors proportionally
according to bank i’s relative liabilities. We assume that for all assets, liquidating value is
identical to book value, so that defaulted banks do not generate additional losses. Then,
sharing liquidation proceeds is equivalent to share loss-given-default proportionally among
creditors. Let’s consider an example, depicted in Figure ??.

When bank i defaults from the external shock xi, its liquidation proceeds are ai+
∑
k

lki−

xi. The loss-given-default that bank j suffers from the default of bank i is the difference

5



Figure 3: The shock and LGD

between nominal liability and proportional repayment made by bank i to bank j.

LGDi
j = lij − (ai +

∑
k

lki − xi)
lij
Li

=
lij
Li

[
Li − (ai +

∑
k

lki)

]
+ xi

lij
Li

=
lij
Li

(−wi) +
lij
Li

xi = LGDi lij
Li

Thus, the shock is distributed proportionally according to relative liabilities. If the
network is transitive, the shock diffuses in waves that do not come back to nodes who have
been already affected by it.

3 Results

3.1 Limiting behavior of the shock

In order to compute the limit of losses in homogeneous, transitive networks as the number
of banks gets large (when n → ∞), we define regular networks of degree k and minimal
transitive cycles of length c as follows.

Definition 1 We say that a homogeneous, transitive network is a regular network with
degree k and minimal transitive cycle of length c ≥ 3 if (i) all nodes have in-degree and
out-degree equal to k and (ii) starting from any bank b ∈ N we can relabel the banks in a
way such that for any i ∈ N out

b

N out
i = {i + 1, i + c− 1, i + c, i + c + 1, ..., i + c + k − 3}

6



and
N in

i = {i− 1, i− c + 1, i− c, i− c− 1, ..., i− c− k + 3}.

Figure ?? shows parts of (infinite) regular networks of degree k = 2 and minimal
transitive cycle of length c = 3, c = 4, and c = 5, respectively. Each of the patterns shown
below is assumed to be repeated infinitely because n→∞.

j j j j j j j j

j j j j j j j j

j j j j j j j j

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

� � � � � � � �

� � � � � � � �

� � � � � � � �

... 1 2 3 4 5 6 7 8 ... c = 5

... 1 2 3 4 5 6 7 8 ... c = 4

... 1 2 3 4 5 6 7 8 ... c = 3

Figure 4: Regular networks of degree 2

The term minimal transitive cycle of length c is used because a regular network, as
defined previously, has many transitive cycles if k > 2. For example, if k = c = 3 and
labeling the nodes as in the examples shown in Figure ??, we have that {12, 23, 13} ⊆ g
(transitive cycle of minimal length 3). Nevertheless, {12, 23, 34, 14} ⊆ g is also a transitive
cycle, but of length greater than 3.

We have the following result regarding the limit behavior of a single shock.

Theorem 2 Let wi be equal to 0 for all i ∈ N and assume one single external initial shock:
there is one unique j ∈ N such that (i) xj > 0, and (ii) if xi > 0 for i 6= j then i ∈ N out,∞

j

and xi =
∑

m∈N in
i (g)

1
k
xm. If the interdependency network of liabilities is a regular network

of degree k ≥ 2 and minimal cycle length c ≥ 3 then for i ∈ N out,∞
j

xi →
2k

2k + (k − 1)(k + 2c− 6)
xj as d(i, j) → ∞

The proof is in the Appendix and it is built considering a natural relabeling/ordering of
the nodes from their position/distance with respect to the node suffering the initial shock
j ∈ N . We can then consider xi for i ∈ N out,∞

j = {2, 3, 4, ....} as an infinite sequence in

7



Figure 5: The limiting value of xi

xj
as d(i, j) goes to infinity and j receives the unique initial,

external shock, for k = 2, ..., 9 and c = 3, ..., 10

<+. This sequence is convergent in <+ and its limit depends on xj, k, and c as stated in
Theorem ??. Figure ?? shows a numerical example of the behavior of the limit xi

xj
as c and

k vary.
Theorem ?? shows that the losses received by banks that are connected to the node

receiving the initial shock j ∈ N do not go to zero even if banks are located infinitely
far from j (as far as k and c are finite). A large value for the limit of the sequence xi

indicates that the structure itself facilitates the propagation of the losses without further
consideration of other factors. Therefore we can consider the limit value of the losses as a
measure of the contagiousness of the network.

3.2 Comparative statics

We discuss now how the limiting value of xi

xj
, where j is the bank with the external, initial

shock and i ∈ N out,∞
j changes as k and/or c vary.

We observe from Theorem ?? that the limit of xi

xj
decreases with higher values of k or

higher values of c (recall that c ≥ 3). Therefore, according to Theorem ??, we can make
two statements regarding the contagiousness of the network. First, increasing the length
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of minimal transitive cycles, while keeping the degree of connectivity constant, will make
the network more robust, in the sense that it will dissipate a larger fraction of the shock
during the diffusion process. Figure ?? provides an example of networks with degree equal
to 2 but different lengths of minimal transitive cycles. Secondly, increasing the degree of
connectivity, while keeping the length of the minimal transitive cycle constant, will also
reduce the contagiousness of the network. Both of these effects can be observed in figure
??, as we move down along either one of the axis from any point.

Increasing the degree of connectivity might nevertheless decrease the length of the
minimal transitive cycle. An example can be found in Figure ?? below. Starting from a
regular network with k = 2 and c = 4, increasing the degree to k = 3 can be done in two
different ways, such that the network remains regular as previously defined. First, we could
add the link i, i+ 2 to the initial network, which would decrease the length of the minimal
transitive cycle to 3. Secondly, we could also add the link i, i + 4 to the initial network,
which would keep the length of the minimal transitive cycle equal to 4. In general, to
obtain a regular network of degree k + 1 by adding one link per node to a regular network
of degree k and minimal transitive cycle length c, there are two possible results. If we add
the link i, i + c − 2 for each i ≥ 1 to the initial network (new short links) the length of
the minimal transitive cycle decreases to c− 1. If we add the link i, i + k + c− 2 for each
i ≥ 1 to the initial network (new long links) the length of the minimal transitive cycle
stays equal to c.

j j j j j j j

j j j j j j j

j j j j j j j

- - - - - - - -

- - - - - - - -

- - - - - - - -

� � � � � � � �

� � � � � �� � � � � � �

� � � � � � � �� � � � � � � �

... 1 2 3 4 5 6 7 ... k = 3, c = 4

... 1 2 3 4 5 6 7 ... k = 3, c = 3

... 1 2 3 4 5 6 7 ... k = 2, c = 4

Figure 6: Increasing the degree of a regular network might decrease the length of the
minimal transitive cycles

With regard to the addition of short links, we have the following proposition for the
limit of losses, when the degree increases by one unit while the length of minimal transitive
cycle decreases by one unit.

9



Proposition 3 Let x̄(k, c) = 2k
2k+(k−1)(k+2c−6) . We have that x̄(k+1, c−1) < x̄(k, c) if and

only if c > 3 + k(k−1)
2

.

The proof of Proposition ?? is straightforward and therefore omitted. Proposition ??
states that there is a threshold for the length of the minimal transitive cycle such that the
addition of a short link to each node reduces the contagiousness of the network.

Summing up, if the length of the minimal transitive cycle c is large enough, the conta-
giousness of the network is reduced if we consider an increase in degree, regardless of the
type of additional links. When the length of the minimal transitive cycle is low, increasing
the degree of connectivity has ambiguous results. If short links are added, the network
becomes more contagious, while if long links are added then the network is less contagious.

This result allows us to identify another factor that contributes to the non-monotonic
relationship between density and systemic risk. Proposition ?? shows that increasing
density may decrease or increase the extent of contagion depending on how the length of
transitive cycles in the network changes as density varies.

4 Discussion

In this section, we extend our analysis of contagiousness and compare the regular networks
with other families of networks that share some characteristics: the tree and the complete
multipartite network. The families of networks that serve as benchmarks are all connected,
transitive networks. This analysis will provide more insights to better understand the effect
of the length of transitive cycles on the contagiousness of the network. Let us then define
the following two types of networks.

First, a connected, transitive network is considered to be a tree of out-degree k if (i) all
nodes have out-degree equal to k and in-degree equal to 1, and (ii) for any two nodes i and
j in N , if i is connected to j there is a unique path from j to i. Secondly, a connected,
transitive, homogeneous network of degree k is a complete multipartite network of degree k
if for any node b ∈ N we can find (i) a set Sb of k− 1 nodes such that for all i ∈ Sb it holds
that N out

i = N out
b , and (ii) a sequence of sets {St

b}t=2,3,4,... such that for all t and i ∈ St
b it

holds that N out
i = St+1

b . Figure ?? shows an example of a tree of out-degree 3, a complete
multipartite network of degree 3, and a regular network of degree 3 and minimal transitive
cycle length equal to 3.

It is easy to see that in the case of the tree of out-degree equal to k the shock received by
banks that are far from the source approaches zero when wi = 0 for all i ∈ N . Recall that
in a tree there will be a unique path connecting any i ∈ N out,∞

j to j (the bank receiving

the unique external shock). For any i ∈ N out,∞
j , each node in the path connecting i to

j diffuses 1
k

of the shock received because wi = 0 for all i ∈ N . Hence, xi = 1
kd(i,j)

xj,
where, recall, d(i, j) is the distance from i to j (in this case the length of the unique path
connecting them). As d(i, j) tends to infinity for i ∈ N out,∞

j , we see that xi tends to zero.

10
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Figure 7: Networks with out-degree equal to 3

The case of the complete multipartite network of degree k is also easy to compute. The
node receiving the initial external shock, j, diffuses 1

k
xj to each i ∈ N out

j . Each i ∈ N out
j

diffuses 1
k2
xj to each h ∈ N out

i . By definition of the complete multipartite network, each
h ∈ N out

i is connected to all i ∈ N out
j , hence receiving xh =

∑
i∈Nout

j

1
k2
xj = 1

k
xj. The shock

received and transmitted by i ∈ N out
j is always equal to 1

k
xj and hence, as d(i, j) tends to

infinity for i ∈ N out
j , xi stays equal to 1

k
xj.

These two types of networks, the tree and the complete multipartite one, illustrate well
the role that in and out degrees have in the contagiousness properties of financial networks.
If k = 1 both the tree and the complete multipartite network are equal to the infinite line
{12, 23, 34, 45, 56, 67, ...} (up to a relabelling of the nodes) and the shock received and
transmitted by any i ∈ N out,∞

j (j being the bank receiving the unique external, initial
shock) is constant and equal to xj. When k ≥ 2 the tree and the complete multipartite
network have a different shape which results in a different diffusion of the shock. In the
tree, the shock received and transmitted by any i ∈ N out,∞

j is decreasing exponentially
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until it reaches zero because the out-degree being greater than the in-degree helps spread
the shock, making it smaller as it travels further through the network. In the complete
multipartite network the in-degree and the out-degree are equal. This creates the possibility
of connecting banks in N out,∞

j to j through many different paths.5 This multiplicity of
paths prevents the shock to decrease to zero as it gets further away from j because there
is accumulation without amplification through the multiple paths connecting the nodes.

This distinct behavior of shock diffusion in these two networks can also be related to the
neighborhood growth in Morris (2000). In the tree, the bank receiving the initial external
shock has k out-neighbors. Each of these k out-neighbors have k distinct out-neighbors,
the initial external shock has an effect over k2 new nodes after two iterations of the set of
out-neighborhood. We note that after l iterations of the set of out-neighborhood kl nodes
are newly added. In the complete multipartite network, the bank receiving the initial
external shock also has k out-neighbors, but each of these k out-neighbors have the same
k out-neighbors. After l iterations of the set of out-neighborhood we still find k new banks
being affected by the initial external shock in the multipartite network. Morris (2000)
shows that in social coordination games (coordination games played on a network) new
behaviors are potentially more contagious in networks where there is slow neighborhood
growth, which means that the number of new out-neighbors at each iteration of the set
of out-neighborhood does not grow exponentially. The diffusion behavior of the shock is
consistent with this view. The tree is less contagious because the shock goes to zero as
we get far from the initial shock in our analysis and the neighborhood growth in the sense
of Morris (2000) is exponential. The complete multipartite network is very contagious
because the shock does not go to zero as we get far from the initial shock in our analysis
and the neighborhood growth in the sense of Morris is not exponential (it is constant).

What happens in the case of the regular network? It is also true that the neighborhood
growth is constant given the regularity of the network: after the node j + c− 1 is reached,
there are always k + c − 3 new out-neighbors added at each iteration step. As c ≥ 3, do
we have to assume that the regular network is less contagious than the complete multipar-
tite network by looking at the neighborhood growth? We have the following proposition
comparing the two limiting values of the shock as we get far from the bank receiving the
initial shock.

Proposition 4 Recall that x̄(k, c) = 2k
2k+(k−1)(k+2c−6) . We have that x̄(k, c) < 1

k
if and only

if c > 3 + k
2
.

The proof of Proposition ?? is straightforward and therefore omitted. Proposition ??
states that there is a threshold for the length of the minimal transitive cycle such that
a regular network can be less contagious than a complete multipartite network. For an
illustration, figure ?? shows that with the same degree of 3, the regular network with c = 5

5This multiplicity of paths does not imply the existence of cycles in the network because links are
directed.
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Figure 8: The value of xi

xj
as a function of the distance d(i, j) to bank j receiving the unique

initial, external shock, for networks of degree equal to 3

is less contagious than the multipartite network, while the regular network with c = 3 is
more contagious.

In particular, if c = 3 the regular network will be more contagious than the complete
multipartite network for any value of k > 1. As c approaches infinity the shape of the
regular network approaches the one of the tree. We also note that the value of the threshold
increases with the degree of the network. If the network gets denser (in the sense of higher in
and out degree) the minimal transitive cycle length has to be greater too so that the regular
network is less contagious than the complete multipartite network of the same degree.
This result demonstrates another important role of minimal transitive cycles. Networks
with very similar patterns and characteristics can have different behaviors regarding shock
diffusion, depending on the value of the length of minimal transitive cycles.

5 Concluding comments

Our analysis provides new insights about shock diffusion in financial networks by focusing
on the role of minimal transitive cycles. Using large regular networks, where all nodes have
equal in-degree and out-degree and with the same pattern of links repeating infinitely, we
allow an initial shock to diffuse as a flow into the system. The contagiousness of a network
is measured by the limit of the losses of banks that are located at an infinite distance to
the first defaulted bank. This measure captures how a structure of liabilities may or may
not facilitate the propagation of losses in spite of other external/financial factors.
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Our analysis allows variations of the length of the minimal transitive cycle as far as the
number of financial institutions tends to infinity. We find that contagiousness is decreasing
in the length of the minimal transitive cycle. Increasing the degree has ambiguous effects,
depending on whether the length of minimal transitive cycle decreases or not after the addi-
tion of new links. Furthermore, similar structures can have different level of contagiousness
when the length of minimal transitive cycles is above or below a certain threshold.

Our results contribute to the literature (see first paragraph of introduction) where the
relationship between density (or diversity) on the network of financial intermediaries and
the extent of contagion is found to be non-monotonic and to depend on external factors.
We complement previous results by Allen et al (2012), who showed that clustering in the
financial network might entail higher systemic risk. We further believe that an indicator
capturing the length of transitive cycles in a network can be easily included in the design
of capital requirement recommendations by central banks.

Further work includes applying numerical methods to compute how the extent of conta-
gion in more realistic financial networks depends on the length of transitive or intransitive
cycles6.
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Appendix

Proof of Theorem ??
Let us fix i = 1 to be the institution receiving the unique external shock. Given the

transitivity nature of our network, only nodes in N out,∞
1 can potentially receive a shock

from their in-neighbors. Given the regularity of our network, we can now label the nodes
following the natural order defined by the network. Formally, the labeling satisfies that (i)
N out,∞

1 = {2, 3, 4, 5, ....}, and (2) for every i and j in N out,∞
1 : i < j if and only if j ∈ N out,∞

i .
The regularity of the network and the transitivity requirements guarantee that the labeling
makes sense. The examples shown in Figure ?? are an illustration of such a natural labeling
of the nodes.

We make use of the following Lemma.

Lemma. Let (N, g) be a regular network of degree k and minimal cycle length c.
Assume wi = 0 for all i ∈ N . We fix i = 1 as the label for the node that receives the
unique external shock. Starting from i = 1 we consider a labeling of nodes as explained
above. Recall that xi denotes total loss in assets that bank i receives in case of a shock
(coming from the external asset or from interbank assets). We have that if c = 3 then

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 + xk = x1,

while if c ≥ 4 then

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 +

k − 1

k
(xk + ... + xk+c−4) + xk+c−3 = x1.

Proof of Lemma. We consider first the case when c = 3. Recall that wi = 0 for
all i ∈ N . Hence node k receives a fraction 1

k
xj from each j ∈ N in

k . By definition of the
network and the labeling of the nodes the only nodes j ∈ N in

k such that xj > 0 are the
ones in the set {1, ..., k − 1}. Hence,

xk =
1

k

k−1∑
j=1

xj.

Substituting xk we obtain

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 + xk =

2

k
x1 +

3

k
x2 + ... +

k − 1

k
xk−2 + xk−1.

We proceed to substitute xk−1. Following the same argument as before,

xk−1 =
1

k

k−2∑
j=1

xj.
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Substituting xk−1 we obtain

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 + xk =

3

k
x1 +

4

k
x2 + ... +

k − 1

k
xk−3 + xk−2.

Applying the argument recursively, we arrive to

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 + xk =

k − 1

k
x1 + x2.

Given that x2 = 1
k
x1 we obtain, by substituting x2, that

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 + xk = x1.

We consider now the case when c ≥ 4. We apply a similar argument as before. Recall
that wi = 0 for all i ∈ N . Hence node k+c−3 receives a fraction 1

k
xj from each j ∈ N in

k+c−3.
We note that, by definition of the network and the labelling of the nodes, the only nodes
j ∈ N in

k+c−3 such that xj > 0 are the ones in the set {1, ..., k − 2, k + c− 4}. Hence,

xk+c−3 =
1

k

k−2∑
j=1

xj +
1

k
xk+c−4.

Substituting xk+c−3 we obtain

1
k
x1 + 2

k
x2 + ... + k−1

k
xk−1 + k−1

k
(xk + ... + xk+c−4) + xk+c−3 =

2
k
x1 + 3

k
x2 + ... + k−1

k
xk−2 + k−1

k
xk−1 + k−1

k
(xk + ... + xk+c−5) + xk+c−4.

We proceed to substitute xk+c−4. Following the same argument as before,

xk+c−4 =
1

k

k−3∑
j=1

xj +
1

k
xk+c−5.

Substituting xk+c−4 we obtain

1
k
x1 + 2

k
x2 + ... + k−1

k
xk−1 + k−1

k
(xk + ... + xk+c−4) + xk+c−3 =

3
k
x1 + 4

k
x2 + ...k−2

k
xk−3 + k−1

k
(xk−2 + xk−1 + xk + ... + xk+c−6) + xk+c−5.

Applying the argument recursively for j ≥ c, noting that c ∈ N out
1 but i /∈ N out

1 for
2 < i ≤ c− 1, we arrive to

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 + xk =

k − 1

k
(x1 + ... + xc−2) + xc−1.
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Given that xi = 1
k
xi−1 for 1 < i ≤ c− 1 we obtain, by substituting recursively, that

1

k
x1 +

2

k
x2 + ... +

k − 1

k
xk−1 +

k − 1

k
(xk + ... + xk+c−4) + xk+c−3 = x1.

This completes the proof of the Lemma. �

We proceed now to prove the statement of Theorem ??. Recall that we have labeled
the nodes such that (i) i = 1 is the node receiving the unique external shock, (ii) N out,∞

1 =
{2, 3, 4, 5, ....}, and (iii) for every i and j in N out,∞

1 : i < j if and only if j ∈ N out,∞
i .

We can rewrite the sequence x1, x2, x3, ... in matrix form as

x[i+1] = Ax[i]

with x[i+1] =


xi+1

xi+2
...

xi+k+c−3

 , x[i] =


xi

xi
...

xi+k+c−4

 and

A(k+c−3×k+c−3) =



0 1 0 · · · 0 0 · · · 0 0
0 0 1 · · · 0 0 · · · 0 0
0 0 0 · · · 1 0 · · · 0 0
0 0 0 · · · 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 · · · 1 0
0 0 0 · · · 0 0 · · · 0 1
1
k

1
k

1
k
· · · 1

k
0 · · · 0 1

k


.

In the last row of matrix A we find the first k − 1 elements and the last element to be
equal to 1

k
(so k elements are equal to 1

k
) and the rest of elements to be equal to 0. It is

easy to see that
x[n] = Anx[1] (1)

with x[1] =


x1

x2
...

xk+c−3

.

Given that A is a row stochastic matrix we have that 1 is a simple eigenvalue of A
and that the spectral radius of A is equal to 1. We also know that A is irreducible and
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primitive.7 Hence, by equation (8.3.10) in Meyer (2000), p. 674, we have that

Lim
n→∞

An =
r.lT

lT .r
(2)

where r and l are, respectively, the right and left eigenvectors corresponding to the eigen-
value 1, lT is the transpose of l (l is written as a column vector, so lT is a row vector).

Given that A is row stochastic, the right eigenvector is equal to the vector of ones. To
compute the left eigenvector we solve

(l1, ..., lk+c−3)



0 1 0 · · · 0 0 · · · 0 0
0 0 1 · · · 0 0 · · · 0 0
0 0 0 · · · 1 0 · · · 0 0
0 0 0 · · · 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 · · · 1 0
0 0 0 · · · 0 0 · · · 0 1
1
k

1
k

1
k
· · · 1

k
0 · · · 0 1

k


= (l1, ..., lk+c−3) ,

and obtain
li = i

k
, for 1 ≤ i ≤ k − 1

li = k−1
k

, for k − 1 < i ≤ k + c− 4
lk+c−3 = 1.

Substituting in (??) to compute the limit of An we obtain

Lim
n→∞

An =
1∑k+c−3

i=1 li


l1 l2 · · · lk+c−3
l1 l2 · · · lk+c−3
· · · · · · · · · · · ·
l1 l2 · · · lk+c−3



Hence,

Lim
n→∞

(xn) =
1∑k+c−3

i=1 li

k+c−3∑
i=1

lixi

Note that

k+c−3∑
i=1

lixi =

{
1
k
x1 + 2

k
x2 + ... + k−1

k
xk−1 + xk, if c = 3

1
k
x1 + 2

k
x2 + ... + k−1

k
xk−1 + k−1

k
(xk + ... + xk+c−4) + xk+c−3 if c ≥ 4.

7A nonnegative n× n matrix A is irreducible if and only if the graph G(A), defined to be the directed
graph on nodes 1, 2, ..., n in which there is a directed edge leading from i to j if and only if aij > 0, is
strongly connected (see Meyer 2000, p. 671). A nonnegative n×n matrix A is primitive if it is irreducible
and at least one diagonal element is positive, i.e., the trace of the matrix is positive (see Meyer 2000, p.
678). Furthermore, we also know that Ak+2c−6 is a positive matrix.
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Hence, by Lemma,

Lim
n→∞

(xn) =
1∑k+c−3

i=1 li
x1 =

2k

2k + (k − 1)(k + 2c− 6)
x1.

This completes the proof of Theorem ??. �
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